扶手椅型多壁硅纳米管电子特性的密度泛函理论研究
Density Functional Theory Research of the Electronic Structure of Armchair Type Multi-Walled Silicon Nanotubes
DOI: 10.12677/MS.2016.63026, PDF, HTML, XML, 下载: 1,870  浏览: 4,129  国家自然科学基金支持
作者: 刘登辉, 唐宇超, 姚程鹏, 祝恒江:新疆师范大学物理与电子工程学院,新疆 乌鲁木齐
关键词: 硅纳米管密度泛函理论结构优化带隙Silicon Nanotubes Density Functional Theory Structural Optimization Band Gap
摘要: 一维硅纳米材料以其特有的光学、电学和半导体特性受到国际上广泛的关注,现已成为纳米科学家研究的热点之一。硅纳米管在晶体管等纳米电子器件、传感器、场发射显示器件、纳米磁性器件及光电器件、储氢及电化学等领域有着广阔的应用前景。由于硅元素为易于形成线状结构的SP3杂化,硅纳米管的制备合成比较困难,目前硅纳米管的研究依然处于初期阶段。本文采用密度泛函理论对三壁硅纳米管进行结构优化和频率计算,获得其电子性质,并得出了其带隙随着尺寸的增加而逐渐减小的性质。
Abstract: One dimensional silicon nanomaterials with its unique optical, electrical and semiconductor properties attract widespread international attention. It has become one of the hot topics in the research of scientists. Silicon nanotubes in transistors, nano-electronic devices, sensors, field emis-sion display devices, nano-magnetic devices and optoelectronic devices, hydrogen storage and electrochemical field have a broad application prospect. Because silicon is easy to form a linear structure of SP3 hybridization, silicon nanotubes synthesis is difficult. At present, silicon nanotubes research is still in initial stage. In this paper, we use the density functional theory to optimize the structure and calculate the frequency of the triple-wall silicon nanotubes, obtain the electronic properties, and conclude the property that the band gap decreases with the increase of the size.
文章引用:刘登辉, 唐宇超, 姚程鹏, 祝恒江. 扶手椅型多壁硅纳米管电子特性的密度泛函理论研究[J]. 材料科学, 2016, 6(3): 207-213. http://dx.doi.org/10.12677/MS.2016.63026

参考文献

[1] Iijima S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
http://dx.doi.org/10.1038/354056a0
[2] Jeong, S.Y., Kim, J.Y., Yang, H.D., et al. (2003) Synthesis o f Silicon Nanotubes on Porous Alumina Using Molecular Beamepiaxy. Advanced Materials, 15, 1172.
http://dx.doi.org/10.1002/adma.200304898
[3] Manzano-Ramirez, A., Moreno-Barcenas, A., Apatiga-Castro, M., et al. (2013) An Overview of Carbon Nanotubes: Synthesis, Purification and Characterization. Current Organic Chemistry, 17, 1858-1866.
http://dx.doi.org/10.2174/13852728113179990087
[4] Georgakilas, V., Perman, J.A., Tucek, J., et al. (2015) Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nano-Diamonds, and Combined Superstructures. Chemical Reviews, 115, 4744-4822.
http://dx.doi.org/10.1021/cr500304f
[5] Garcia-Borràs, M., Osuna, S., Luis, J.M., et al. (2014) The Role of Ar-omaticity in Determining the Molecular Structure and Reactivity of (Endohedralmetallo) Fullerenes. Chemical Society Reviews, 43, 5089-5105.
http://dx.doi.org/10.1039/c4cs00040d
[6] Pérez, E.M. and Martín, N. (2015) π-π Interactions in Carbon Nanostructures. Chemical Society Reviews, 44, 6425- 6433.
http://dx.doi.org/10.1039/C5CS00578G
[7] Daeneke, T., Carey, B.J., Chrimes, A.F., et al. (2015) Light Driven Growth of Silver Nanoplatelets on 2D MoS 2 Nanosheet Templates. Journal of Materials Chemistry C, 3, 4771-4778.
http://dx.doi.org/10.1039/C5TC00288E
[8] Biju, V. (2014) Chemical Modifications and Bioconjugate Reactions of Nanomaterials for Sensing, Imaging, Drug Delivery and Therapy. Chemical Society Reviews, 43, 744-764.
http://dx.doi.org/10.1039/C3CS60273G
[9] Cheng, L., Wang, C., Feng, L., et al. (2014) Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 114, 10869-10939.
http://dx.doi.org/10.1021/cr400532z
[10] Perreault, F., de Faria, A.F. and Elimelech, M. (2015) Environmental Applications of Graphene-Based Nanomaterials. Chemical Society Reviews, 44, 5861-5896.
http://dx.doi.org/10.1039/C5CS00021A
[11] Li, J. and Pandey, G.P. (2015) Advanced Physical Chemistry of Carbon Nanotubes. Annual Review of Physical Chemistry, 66, 635-651.
http://dx.doi.org/10.1146/annurev-physchem-040214-121535
[12] Salice, P., Sartorio, C., Burlini, A., et al. (2015) On the Trade-Off between Processability and Opto-Electronic Properties of Single Wall Carbon Nanotube Derivatives in Thin Film Heterojunctions. Journal of Materials Chemistry C, 3, 303-312.
http://dx.doi.org/10.1039/C4TC01350F
[13] Guo, L., Zheng, X., Liu, C., Zhou, W. and Zeng, Z. (2012) An Ab Initio Study of Cluster-Assembled Hydrogenated Silicon Nanotubes. Computational and Theoretical Chemistry, 982, 17-24.
[14] Sha, J., Niu, J., Ma, X., et al. (2002) Silicon Nanotubes. Advanced Materials, 14, 1219-1221.
http://dx.doi.org/10.1002/1521-4095(20020903)14:17<1219::AID-ADMA1219>3.0.CO;2-T
[15] Fagan, S.B., Baierle, R.J., Mota, R., et al. (2000) Ab Initio Calculations for a Hypothetical Material: Silicon Nanotubes. Physical Review B, 61, 9994-9996.
http://dx.doi.org/10.1103/PhysRevB.61.9994
[16] Bai, J., Zeng, X.C., Tanaka, H. and Zeng, J.Y. (2004) Metallic Single-Walled Silicon Nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 101, 2664-2668.
http://dx.doi.org/10.1073/pnas.0308467101
[17] Zhang, M., Kan, Y.H., Zhang, Q.J., Su, Z.M. and Wang, R.S. (2003) Why Silicon Nanotubes Stably Exist in Armchair Structure? Chemical Physics Letters, 379, 81-86.
http://dx.doi.org/10.1016/j.cplett.2003.08.030
[18] Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S. (1993) Electronic Structure and Growth Mechanism of Carbon Tubules. Materials Science and Engineering: B, 19, 185-191.
[19] Zhen, W., Yokojima, S., Ng, M.-F., Hua, G. and He, G.Z. (2001) Optical Properties of Single-Wall 4 Å Carbon Nanotubes. Journal of the American Chemical Society, 123, 9830-9836.
http://dx.doi.org/10.1021/ja0160445
[20] Zhang, R.Q., Lee, H.L., Li, W.K. and Teo, B.K. (2005) Investigation of Possible Structures of Silicon Nanotubes via Density-Functional Tight-Binding Molecular Dynamics Simulations and Ab Initio Calculations. The Journal of Physical Chemistry B, 109, 8605-8612.
http://dx.doi.org/10.1021/jp045682h
[21] Barnard, A. and Russo, S.P. (2003) Structure and Energetics of Sin-gle-Walled Armchair and Zigzag Silicon Nanotubes. The Journal of Physical Chemistry B, 107, 7577-7581.
http://dx.doi.org/10.1021/jp0347421
[22] Singh, K.A., Briere, T.M., Kumar, V. and Kawazoe, Y. (2003) Mag-netism in Transition-Metal-Doped Silicon Nanotubes. Physical Review Letters, 91, Article ID: 146802.
http://dx.doi.org/10.1103/PhysRevLett.91.146802
[23] Tang, Y.H., Pei, L.Z., Chen, Y.W. and Guo, C.G. (2005) Self-Assembled Silicon Nanotubes under Supercritically Hydrothermal Condition. Physical Review Letters, 95, Article ID: 116102.
[24] Frisch, M.J., et al. (2004) Gaussian 03, Revision E01. Gaussian, Inc., Wallingford CT.
[25] Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648-5652.
http://dx.doi.org/10.1063/1.464913
[26] Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron density. Physical Review B, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
[27] Hay, P.J. and Wadt, W.R. (1985) Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. The Journal of Chemical Physics, 82, 299-310.
http://dx.doi.org/10.1063/1.448975
[28] Hay, P.J. and Wadt, W.R. (1985) Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. The Journal of Chemical Physics, 82, 270-283.
http://dx.doi.org/10.1063/1.448799
[29] Wadt, W.R. and Hay, P.J. (1985) Ab Initio Effective Core Po-tentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. The Journal of Chemical Physics, 82, 284-298.
http://dx.doi.org/10.1063/1.448800
[30] Kudin, K.N. and Scuseria, G.E. (2000) Linear-Scaling Densi-ty-Functional Theory with Gaussian Orbitals and Periodic Boundary Conditions: Efficient Evaluation of Energy and Forces via the Fast Multipole Method. Physical Review B, 61, 16440-16453.
http://dx.doi.org/10.1103/PhysRevB.61.16440
[31] Erkoc, S. (2000) The Effect of PBC on the Simulation of Nanotubes. International Journal of Modern Physics C, 11, 547-551.
[32] Pisani, C., Ed. (1996) Lecture Notes in Chemistry. Vol. 67, Springer-Verlag, Heidelberg.
[33] Zhang, R.Q., Lee, S.T., Law, C.-K., Li, W.-K. and Teo, B.K. (2002) Silicon Nanotubes: Why Not? Chemical Physics Letters, 364, 251-258.
http://dx.doi.org/10.1016/S0009-2614(02)01334-9