碲对硫酸铜体系中铜电解的影响
Effect of Tellurium on Copper Electrodeposition in Copper Sulfate-Sulfuric Acid System
DOI: 10.12677/MEng.2016.32010, PDF, HTML, XML,  被引量 下载: 1,963  浏览: 4,816 
作者: 李超超, 伍廉奎, 曹华珍, 郑国渠:浙江工业大学材料科学与工程学院,浙江 杭州
关键词: 电沉积循环伏安除杂Copper Tellurium Electrodeposition Cyclic Voltammetry Eliminate
摘要: 本文系统研究了碲对硫酸铜体系中电解铜电流效率、结构组成和微观形貌的影响,同时提出一种去除碲的有效方法。研究结果表明,电解液中含有碲离子对铜的结晶取向和形核生长有明显影响。XRD测试结果表明,碲离子的存在使铜的最优生长取向从(220)晶面转变为(111)晶面。光学照片表明碲的存在可显著降低电沉积铜的韧性。扫描电镜照片表明沉积层的晶粒随碲浓度增加而逐渐减小。除碲实验表明,利用铜屑在95℃条件下反应一个小时,可将碲浓度由1 g/L降至20 mg/L,净化后的电解液电解可获得光亮阴极铜。
Abstract: The influence of tellurium as an impurity during electrodeposition of copper from sulfate solution was investigated. The effect of tellurium concentration on the current efficiency, chemical structure and morphology at macro and micro level was systematically studied. XRD patterns show that the introduction of tellurium can change the preferential orientation of the deposits from (220) plane to (111) plane. And optical images exhibit that tellurium will reduce the tenacity of the elec-trodeposited copper. The eliminating experiment shows that the concentration of tellurium will reduce from 1 g/L to 20 mg/L after reacting 1 h under 95˚C, and bright copper can be obtained from the electrolyte.
文章引用:李超超, 伍廉奎, 曹华珍, 郑国渠. 碲对硫酸铜体系中铜电解的影响[J]. 冶金工程, 2016, 3(2): 64-71. http://dx.doi.org/10.12677/MEng.2016.32010

参考文献

[1] Baral, A., Sarangi, C.K., Tripathy, B.C., et al. (2014) Copper Electrodeposition from Sulfate Solutions—Effects of Se-lenium. Hydrometallurgy, 146, 8-14.
http://dx.doi.org/10.1016/j.hydromet.2014.03.001
[2] Agrawal, A. and Sahu, K.K. (2010) Problems, Prospects and Current Trends of Copper Recycling in India: An Overview. Resources Conservation & Recycling, 54, 401-416.
http://dx.doi.org/10.1016/j.resconrec.2009.09.005
[3] Choubey, P.K., Panda, R., Jha, M.K., et al. (2015) Recovery of Copper and Recycling of Acid from the Leach Liquor of Discarded Printed Circuit Boards (PCBs). Separation and Purification Technology, 156, 269-275.
http://dx.doi.org/10.1016/j.seppur.2015.10.012
[4] Fogarasi, S., Imre-Lucaci, F., Egedy, A., et al. (2015) Eco-Friendly Copper Recovery Process from Waste Printed Circuit Boards Using Fe3+/Fe2+ Redox System. Waste Management, 40, 136-143.
http://dx.doi.org/10.1016/j.wasman.2015.02.030
[5] Dimitrijevic, M.D., Urosevic, D.M., Jankovic, Z.D., et al. (2016) Recovery of Copper from Melting Slag by Sulphation Roasting and Water Leaching. Fizykochemiczne Problemy Mineralurgii—Physicochemical Problems of Mineral Pro- cessing, 52, 409-421.
[6] 文燕. 铜闪速熔炼烟灰浸出试验研究[J]. 冶金工程, 2015, 2(3): 151-157.
[7] Hait, J. (2009) Processing of Copper Electrorefining Anode Slime: A Review. Mineral Processing & Extractive Metallurgy, 118, 240-252.
http://dx.doi.org/10.1179/174328509X431463
[8] Amer, A.M. (2002) Processing of Copper Anode Slimes for Extraction of Metal Values. Physicochemical Problems of Mineral Processing, 123-134.
[9] Das, S.C. and Krishna, P.G. (1996) Effect of Fe(III) during Copper Electrowinning at Higher Current Density. International Journal of Mineral Processing, 46, 91-105.
http://dx.doi.org/10.1016/0301-7516(95)00056-9
[10] Cheng, C.Y., Hughes, C.A., Barnard, K.R., et al. (2000) Manganese in Copper Solvent Extraction and Electrowinning. Hydrometallurgy, 58, 135-150.
http://dx.doi.org/10.1016/s0304-386x(00)00120-1
[11] Panda, B., Das, S.C. and Panda, R.K. (2009) Effect of Added Cobalt Ion on Electro-Deposition of Copper from Sulfate Bath Using Graphite and Pb-Sb Anodes. Hydrometallurgy, 95, 87-91.
http://dx.doi.org/10.1016/j.hydromet.2008.04.018
[12] Huang, H., Zhou, J.Y. and Guo, Z.C. (2010) Effect of Added Cobalt Ion on Copper Electrowinning from Sulfate Bath Using Doped Polyaniline and Pb-Ag Anodes. Transac-tions of Nonferrous Metals Society of China, 20, s55-s59.
http://dx.doi.org/10.1016/s1003-6326(10)60012-x
[13] Safizadeh, F., Lafront, A.-M., Ghali, E., et al. (2012) An Investigation of the Influence of Selenium on Copper Deposition during Electrorefining Using Electrochemical Noise Analysis. Hydrometallurgy, 111, 29-34.
http://dx.doi.org/10.1016/j.hydromet.2011.09.008
[14] Wen, S., Corderman, R.R., Seker, F., et al. (2006) Kinetics and Initial Stages of Bismuth Telluride Electrodeposition. Journal of the Electrochemical Society, 153, C595-C602.
http://dx.doi.org/10.1149/1.2212053
[15] Cao, H.Z., Yang, D., Zhu, S.L., Dong, L. and Zheng, G.Q. (2012) Preparation, Characterization, and Electrochemical Studies of Sulfur-Bearing Nickel in an Ammoniacal Electrolyte: The Influence of Thiourea. Journal of Solid State Electrochemistry, 16, 3115-3122.
http://dx.doi.org/10.1007/s10008-012-1753-0
[16] Fletcher, S., Halliday, C.S., Gates, D., et al. (1983) The Re-sponse of Some Nucleation/Growth Processes to Triangular Scans of Potential. Journal of Electroanalytical Chemistry, 159, 267-285.
http://dx.doi.org/10.1016/S0022-0728(83)80627-5