双马达旁路补偿同步控制行走系统的研究
Research on Synchronization Control of Dual-Motor Running System with Bypass Compensation
DOI: 10.12677/MET.2016.52009, PDF, HTML, XML, 下载: 2,002  浏览: 4,533 
作者: 柯常训*, 胡军科, 胡 悦:中南大学机电工程学院,高性能复杂制造国家重点实验室,湖南 长沙;蒋亚军:中交第四航务工程勘察设计院有限公司,广东 广州
关键词: 主动式铲运机旁路补偿交叉耦合控制同步控制Self-Propelled Scooptram Bypass Compensation Crossing-Coupled Control Synchronized Control
摘要: 为了提高静液驱动主动式铲运机行走控制系统的响应速度和直驶稳定性,针对大功率马达速度同步控制系统的同步精度低、响应速度慢的特点,结合交叉耦合控制与大功率阀泵并联调速系统提出了旁路补偿同步控制方案,即将子通道状态差值反馈信号直接作用于旁路设置的比例阀,以此来调节马达进油流量,达到同步误差补偿作用。建立了旁路补偿容积调速同步系统的数学模型,在Matlab/Simulink环境中进行仿真并对比相同控制条件下的容积调速同步控制方案。结果表明:该方案在承受稳定偏载及动态负载情况下的同步误差大幅减少,调节时间减少1/2;马达同步运动所需流量主要由变量泵提供,利用旁路比例阀对容积调速的同步误差进行补偿,这样较好的结合了节流调速和容积调速各自的优点,达到同步精度高、响应速度快、节能高效的目的。
Abstract: In order to improve the response speed of control system and the stability on straight driving of hydrostatic drive self-propelled scooptram, in view of the low synchronous control precision and slow response of high power motor speed synchronization system, the synchronization control system with bypass compensation combined cross-coupling control and valve-pump combined high power hydraulic speed regulation was proposed. The status difference feedback signal of the sub channel is directly acting on the bypass proportional valve, so as to adjust the inlet flow of motors, and achieve a compensation for synchronization error. A mathematical model of the speed synchronization system with bypass compensation was established; the new control scheme was evaluated within Matlab/Simulink compared with a volume speed-modulating synchronization control scheme under the same conditions of control. Results show that: Synchronization error of the system proposed in this paper is reduced significantly under partial load and step load conditions, and the settling time is reduced by half; The flow for synchronized movement is mainly provided by the variable displacement pump, and the bypass proportional valve only compensates the synchronization error, so as to make a good used of each advantage of the throttle speed-modulating and the volume speed-modulating and achieves the purposes of fast response, high synchronization accuracy and energy efficiency.
文章引用:柯常训, 胡军科, 胡悦, 蒋亚军. 双马达旁路补偿同步控制行走系统的研究[J]. 机械工程与技术, 2016, 5(2): 66-75. http://dx.doi.org/10.12677/MET.2016.52009

参考文献

[1] 刘晓峰, 刘昕辉, 王龙山, 等. 基于模糊PID控制的大型履带起重机双马达速度同步控制[J]. 吉林大学学报(工学版), 2011, 41(3): 659-664.
[2] 刘晓峰. 履带起重机起升系统双马达同步控制技术研究[D]: [博士学位论文]. 长春: 吉林大学, 2012.
[3] 吴宝林, 裘丽华, 祁晓野, 等. 单泵驱动双马达速度同步控制技术研究[J]. 系统仿真学报, 2006, 18(6): 1585- 1588.
[4] 逄波, 王占林, 白国长. 工程机械液压地盘试验台双马达同步的研究[J]. 系统仿真学报, 2007, 19(9): 2018-2021.
[5] 李和言, 陈宝瑞, 马彪, 等. 高速履带车辆静液压传动模糊自适应PID同步控制[J]. 农业机械学报, 2010, 41(3): 16-19.
[6] 游张平, 彭英, 李万莉, 等. 连续墙液压抓斗起重机双主卷扬同步控制[J]. 同济大学学报(自然科学版), 2010, 38(11): 1635-1640.
[7] 魏建华, 国凯, 熊义. 大型装备多轴电液执行器同步控制[J]. 浙江大学学报(工学版), 2013, 47(5): 755-760.
[8] 丁海港, 赵继云, 李广洲. 阀泵联合大功率液压调速方案分析[J]. 煤炭学报, 2013, 38(9): 1703-1709.
[9] 王飞, 唐文献, 吴春艳, 等. 海洋风电吊装运输专用船液压同步控制系统研究[J]. 现代制造工程, 2012(9): 122-125.
[10] Keron, Y. (1980) Crossing-Coupled Biaxial Computer Control for Manufacturing System. ASME Journal of Dynamic System Measurement and Control, 102, 265-272.
http://dx.doi.org/10.1115/1.3149612