裂缝性致密砂岩储层声波测井数值模拟
Numerical Simulation of Sonic Logging in Fractured Tight Sandstone Reservoirs
DOI: 10.12677/JOGT.2016.382012, PDF, HTML, XML, 下载: 1,642  浏览: 4,904  国家科技经费支持
作者: 龚 丹:油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉;长江大学期刊社,湖北 荆州;章成广:油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉
关键词: 声波测井斯通利波裂缝性致密砂岩数值模拟测井响应特征Acoustic Logging Stoneley Wave Fractured Tight Sandstone Numerical Simulation Logging Response Characteristics
摘要: 目前,用来评价致密砂岩储层有效性的测井方法主要有常规测井、成像测井及声波测井3种。由于裂缝性致密砂岩储层的裂缝宽度一般小于100 μm,常规测井和成像测井对微裂缝难以进行有效识别,而声波测井可通过斯通利波衰减系数等参数对微裂缝进行定性甚至定量识别。通过数值模拟计算,对含有裂缝的致密储层井孔声场进行研究,掌握裂缝对井内声场的影响规律,对于声波测井数据处理及解释具有重要意义。应用三维交错网格应力-速度有限差分方法,模拟了含有倾斜薄裂缝的孔隙介质地层中点声源所激发的井孔声场问题。针对单条水平裂缝,确定了不同裂缝宽度(20~1000 µm)对斯通利波识别微裂缝的影响,即裂缝宽度越大,波形振幅越小;裂缝宽度较小时(裂缝宽度小于100 μm),波形幅度对裂缝宽度的变化非常敏感,递减非常快;裂缝宽度越大时,斯通利波衰减系数越大。此外,还计算了孔隙介质地层不同孔隙度条件下斯通利波、横波、纵波幅度及衰减系数与裂缝宽度的关系,即孔隙度越大,斯通利波、横波、纵波幅度越小,衰减系数越大。
Abstract: The logging methods to evaluate the effectiveness of the tight sandstone reservoir mainly include conventional logging, imaging logging and acoustic logging. It was difficult to effectively identify the microfractures by conventional logging and imaging logging, because the width of fractures in fractured tight sandstone reservoirs was less than 100 μm, but the acoustic logging makes an qua-litative identification and quantitative evaluation to microfractures through the stoneley wave at-tenuation coefficient and other parameters. It will be of great importance to master the influencing rule of fracture of borehole acoustic field for acoustic logging data processing and interpretation by numerical simulation, researching the borehole acoustic field on tight reservoir with the fractures. The method of three-dimensional staggered grid stress and speed finite difference was applied to numerically simulate the problems of borehole acoustic field, which was aroused by point source in layer of elastic media and pore media containing inclined thin cracks. The microfractures in fractured tight sandstone reservoirs were effectively identified and evaluated by using the parameters of energy amplitude of Stoneley wave and etc. In consideration of single horizontal crack, the influence of crack width (20 - 1000 µm) on the Stoneley wave used to identify microfractures was determined, the wider the fracture was, the smaller the amplitude of Stoneley wave was. When the width of fractures was narrower (crack width was less than 100 μm), the wave-form amplitude diminished rapidly. The wider the fracture was, the bigger the Stoneley wave atten-uation would be. Nevertheless, the relationship between its waveform amplitude, attenuation and fractural width was also obtained under the condition of different porosities of porous medium in formation, that was, the bigger the porosity was, the smaller the amplitude of Stoneley wave, P-wave and S-wave was, the larger the attenuation coefficient of Stoneley wave, P-wave and S-wave was.
文章引用:龚丹, 章成广. 裂缝性致密砂岩储层声波测井数值模拟[J]. 石油天然气学报, 2016, 38(2): 28-35. http://dx.doi.org/10.12677/JOGT.2016.382012

参考文献

[1] Spring, C. and Dudley, D. (1992) Acoustic-Wave Propagation in a Cylindrical Borehole with Fractures. The Journal of the Acoustical Society of America, 91, 658-669.
http://dx.doi.org/10.1121/1.402527
[2] Kostek, S., Johnson, D. and Randall, C. (1998) The Interaction of Tube Waves with Borehole Fractures. Part I: Numerical Models. Geophysics, 63, 800-808.
http://dx.doi.org/10.1190/1.1444391
[3] Matuszyk, P.J., Torres-Verdín, C. and Pardo, D. (2013) Frequency-Domain Fi-nite-Element Simulations of 2D Sonic Wireline Borehole Measurements Acquired in Fractured and Thinly Bedded Formations. Geophysics, 78, 193-207.
http://dx.doi.org/10.1190/geo2012-0397.1
[4] Guan, W., Hu, H. and He, X. (2009) Finite-Difference Modeling of the Monopole Acoustic Logging in a Horizontally Stratified Porous Formation. The Journal of the Acoustical Society of America, 125, 1942-1950.
http://dx.doi.org/10.1121/1.3081518
[5] 陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3): 4-6, 13.
[6] 丛健生. 利用有限差分法模拟计算具有分层和裂缝地层井内外声场[D]: [硕士学位论文]. 大庆: 大庆石油学院, 2004.
[7] Leslie, H.D. and Randall, C.J. (1992) Multipole Sources in Boreholes Penetrating Anisotropic Formations. The Journal of the Acoustical Society of America, 91, 12-17.
http://dx.doi.org/10.1121/1.402761
[8] Cheng, N.Y., Cheng, C.H. and Toksoz, M.N. (1995) Borehole Wave Propagation in Three Dimensions. The Journal of the Acoustical Society of America, 97, 3483-3493.
http://dx.doi.org/10.1121/1.412996
[9] Sinha, B.K., Ergün, Ş. And Liu, Q.H. (2006) Elastic-Wave Propagation in Deviated Wells in Anisotropic Formations. Geophysics, 71, 191-202.
http://dx.doi.org/10.1190/1.2358402
[10] 林伟军, 王秀明, 张海澜. 倾斜地层中的井孔声场研究[J]. 地球物理学报, 2006, 49(1): 284-294.
[11] 阎守国, 宋若龙, 吕伟国, 等. 横向各向同性地层斜井中正交偶极子激发声场的数值模拟[J]. 地球物理学报, 2011, 54(9): 2412-2418.