Pd-Ni/Al2O3催化合成四甲基二丙烯三胺研究
Pd-Ni/Al2O3 Catalyze Synthesis of 3,3’-Iminobis(N,N-dimethylpropylamine)
DOI: 10.12677/JOCR.2016.42006, PDF, HTML, XML, 下载: 1,995  浏览: 4,544  国家自然科学基金支持
作者: 刘威威, 姜伟伟, 唐维克, 冯乙巳:合肥工业大学化学与化工学院,安徽 合肥
关键词: 二甲基丙二胺二甲氨基丙腈四甲基二丙烯三胺Pd-Ni/γ-Al2O3NN-Dimethyl-13-propane Diamine Dimethylaminopropionitrile 33'-iminobis(NN-dimethylpropylamine) Pd-Ni (1:1)/Al2O3
摘要: 本研究采用浸渍法制作了一系列的以γ-Al2O3为载体的Pd-Ni双金属纳米催化剂(Pd-Ni(x: y)/Al2O3;x和y分别是Pd-Ni的摩尔比),该催化剂用于二甲基丙二胺和二甲氨基丙腈加氢合成四甲基二丙烯三胺。并使用X射线衍射(XRD)、X电子光谱法(XPS)和透射电子显微镜法(TEM)对催化剂进行了表征。催化剂的活性随着Pd-Ni负载量的不同而变化。在所有催化剂中Pd-Ni/γ-Al2O3 (Pd:Ni = 1:2)表现出了最佳的催化活性,转化率在30%~40%,选择性达到90% (120˚C, 最初氢气压力2 MPa, 8 h)。
Abstract: Several γ-Al2O3 supported Pd-Ni bimetallic nanocatalysts (Pd-Ni(x:y)/Al2O3; where x and y repre-sent the mass ratio of Pd and Ni, respectively) were prepared by the impregnation method and used for selective hydrogenation of N,N-Dimethyl-1,3-propane diamine and Dimethylaminopropionitrile to 3,3’-iminobis(N,N-dimethylpropylamine). The Pd-Ni/Al2O3 samples were confirmed to have generated Pd-Ni bimetallic nanoparticles by X-ray diffraction (XRD), X-ray photoelectron spec-troscopy (XPS) and transmission electron microscopy (TEM). The catalytic activity was assessed in view of the effects of different mass ratios of Pd and Ni. Among all the samples, the Pd-Ni (1:2)/Al2O3 (PN-1:1) catalyst showed extremely high catalytic ability, which had 30% - 40% conversion rate and 90% selectivity (120˚C, 2 MPa initial H2 pressure, 8 h).
文章引用:刘威威, 姜伟伟, 唐维克, 冯乙巳. Pd-Ni/Al2O3催化合成四甲基二丙烯三胺研究[J]. 有机化学研究, 2016, 4(2): 40-50. http://dx.doi.org/10.12677/JOCR.2016.42006

参考文献

[1] Abe, H., Katoh, T. and Tajima, H. (1991) Production of Aliphatic Primary of Secondary Amine. US Patent No. 5097073.
[2] Ward, G.J., Breeze, G. and Blanchard, B.C. (2003) Low Pressure Process for Manufacture of 3-Dimethylaminopropy- lamine (DMAPA). US Patent No.6660887B1.
[3] Wermelskirchen, J.K., Leverkusen, H.F. and Odenthal, W.K. (1992) Process for the Preparation of Bis- and Tris-(3- dimethylaminopropyl)amine. US Patent No.5101075.
[4] Vernaizon, F.H., Rueil-Malmaisom, M.R. and Vernaison, M.M. (2002) Process for Synthesizing Hydrocarbons from Synthesis Gas in the Presence of a Raney Metal Alloy Disperded in a Liquid Phase. US Patent No.6391929 B1.
[5] Fernando, C.L., Santiago, G.Q., Claudia, A. and Keane, M.A. (2014) Gas Phase Hydrogenation of P-Chloronitroben- zene over Pd-Ni/Al2O3. Applied Catalysis A: General, 473, 41-50.
http://dx.doi.org/10.1016/j.apcata.2014.01.001
[6] Yang, H., Shi, D., Ji, S.F., Zhang, D.N. and Liu, X.F. (2014) Nanosized Pd Assembled on Superparamagnetic Core-Shell Microspheres: Synthesis, Characterization and Recyclable Catalytic Properties for the Heck Reaction. Chinese Chemical Letters, 25, 1265-1270.
http://dx.doi.org/10.1016/j.cclet.2014.05.003
[7] Basha, S.J.S., Vijayan, P., Suresh, C., Santhanaraj, D. and Shanthi, K. (2009) Effect of Order of Impregnation of Mo and Ni on the Hydrodenitrogenation Activity of NiO-MoO3/AlMCM-41 Catalyst. Industrial & Engineering Chemistry Research, 48, 2774-2780.
http://dx.doi.org/10.1021/ie800932u
[8] Jaap, A.B., Tom, V., Bob, R.G.L., Brenda, D.R., Krijn, P.D.J. and Bert, M.W. (2004) Envisaging the Physicochemical Processes during the Preparation of Supported Catalysts: Raman Microscopy on the Impregnation of Mo onto Al2O3 Extrudates. Journal of the American Chemical Society, 126, 14548-14556.
http://dx.doi.org/10.1021/ja040107c
[9] Feng, Y.S., Hao, J., Liu, W.W., Yao, Y.J., Cheng, Y. and Xu, H.-J. (2015) Characterization and Reactivity of γ-Al2O3 Supported Pd-Ni Bimetallic Nanocatalysts for Selective Hydrogenation of Cyclopentadiene. Chinese Chemical Letters, 26, 709-713.
http://dx.doi.org/10.1016/j.cclet.2015.03.006
[10] Qiu, Y., Xin, L. and Li, W.Z. (2014) Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni-Fe Nanoparticles in Alkaline Electrolyte. Langmuir, 30, 7893-7901.
http://dx.doi.org/10.1021/la501246e
[11] Feng, Y.S., Liu, C., Kang, Y.M., Zhou, X.M., Liu, L.L., et al. (2015) Selective Hydrogenolysis of Glycerol to 1,2- Propanediol Catalyzed by Supported Bimetallic PdCu-KF/γ-Al2O3. Chemical Engineering Journal, 281, 96-101.
http://dx.doi.org/10.1016/j.cej.2015.06.087
[12] Morrish, R. and Muscat, A.J. (2009) Nanoporous Silver with Controllable Optical Properties Formed by Chemical Dealloying in Supercritical CO2. Chemistry of Materials, 21, 3865-3870.
http://dx.doi.org/10.1021/cm9015386
[13] Babu, N.S., Lingaiah, N. and Prasad, P.S.S. (2012) Characterization and Reactivity of Al2O3 Supported Pd-Ni Bimetallic Catalysts for Hydrodechlorination of Chlorobenzene. Appl. Catal. B Environ, 111-112, 306-309.
[14] Pan, X.Q., Zhang, Y.B., Zhang, B., Miao, Z.Z. and Yang, X.G. (2013) Influence of Electronic Effect on Methane Catalytic Combustion over PdNi/Al2O3. Chemical Research in Chinese Universities, 29, 952-955.
http://dx.doi.org/10.1007/s40242-013-3135-2
[15] Lu, P., Teranishi, T., Asakura, K., Miyake, M. and Toshima, N. (1999) Polymer-Protected Ni/Pd Bimetallic Nano-Clusters: Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. The Journal of Physical Chemistry B, 103, 9673-9682.
http://dx.doi.org/10.1021/jp992177p
[16] Dissanayake, D., Rosynek, M.P., Kharas, K.C.C. and Lunsford, J.H. (1991) Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over a Nickel/Alumina Catalyst. Journal of Catalysis, 132, 117-127.
[17] Cheekatamarla, P.K. and Lane, A.M. (2005) Efficient Bimetallic Catalysts for Hydrogen Generation from Diesel Fuel. International Journal of Hydrogen Energy, 30, 1277-1285.
http://dx.doi.org/10.1016/j.ijhydene.2005.02.010