可见光催化剂Fe3O4/BiOI的制备及其催化活性研究
Study on Preparation and Catalytic Activity of Fe3O4/BiOI under Visible Light Radiation
DOI: 10.12677/WPT.2016.43011, PDF, HTML, XML, 下载: 1,962  浏览: 4,740  科研立项经费支持
作者: 张 强, 陈 耀, 董小霞, 崔逸萌, 申贵宾, 燕启社:郑州大学化学与分子工程学院,河南 郑州
关键词: 四氧化三铁碘氧化铋复合光催化剂可见光磁性回收Fe3O4 BiOI Composite Photocatalyst Visible Light Magnetic Recovery
摘要: 采用水热法合成了磁性的、可见光响应的Fe3O4/BiOI复合光催化剂,运用X射线衍射(XRD),扫描电子显微镜(SEM),紫外–可见漫反射光谱(UV-vis DRS)对所制备的光催化剂进行了表征,结果显示所制备的复合光催化剂的粒径范围为0.5~2 μm且形貌呈球形结构。在可见光照射下,通过降解甲基橙测定不同比例复合光催化剂的活性大小,结果表明当Fe3O4的负载量为5%时,复合光催化剂具有最佳的光催化活性,甲基橙的降解率可达81%;而单纯的BiOI的降解率仅为40%。通过外部磁场的作用,Fe3O4/BiOI复合光催化剂能快速彻底地从体系中分离。复合光催化剂实现了外部磁场控制的循环回收利用,在实际应用中具有潜在的价值。
Abstract: Magnetic Fe3O4/BiOI composite photocatalysts with visible light response were successfully fab-ricated through hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible diffuse reflection spectroscopy (UV-vis DRS) respectively. The characterization results show that the grain sizes of composite photocatalysts samples were varied from 0.5 μm to 2 μm and their morphologies were spheroid. The activities of composite photocatalysts with different proportions were evaluated by photodegradation of methyl orange under visible-light irradiation. Results show that the 5% Fe3O4/BiOI composite photocatalyst has the best photocatalytic activity. After 120 min of irradiation, removal rate of methyl orange reached to 81%, which was superior to the pure BiOI (40%). By the effect of the external magnetic field, the composite photocatalysts can be quickly and completely separated from the system, indicating a potential prospect in the practical application.
文章引用:张强, 陈耀, 董小霞, 崔逸萌, 申贵宾, 燕启社. 可见光催化剂Fe3O4/BiOI的制备及其催化活性研究[J]. 水污染及处理, 2016, 4(3): 72-79. http://dx.doi.org/10.12677/WPT.2016.43011

参考文献

[1] Hu, C.C., Hsu, T.C. and Lu, S.Y. (2013) Effect of Nitrogen Doping on the Microstructure and Visible Light Photoca-talysis of Titanate Nanotubes by a Facile Cohydrothermal Synthesis via Urea Treatment. Applied Surface Science, 280, 171-178.
http://dx.doi.org/10.1016/j.apsusc.2013.04.120
[2] Paramasivam, I., Jha, H., Liu, N. and Schmuki, P. (2012) A Review of Photocatalysis Using Self-Organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures. Small, 8, 3073-3103.
http://dx.doi.org/10.1002/smll.201200564
[3] Kubacka, A., García, M.F. and Colón, G. (2012) Advanced Nanoarchitectures for Solar Photo-Catalytic Applications. Chemical Reviews, 112, 1555-1614.
http://dx.doi.org/10.1021/cr100454n
[4] Zhang, Y., Ma, Q.B., Gao, L. and Hensen, E.J.M. (2013) Preparation and Photoelectrochemical Properties of Nitrogen Doped Nanotubular TiO 2 Arrays. Applied Surface Science, 282, 174-180.
http://dx.doi.org/10.1016/j.apsusc.2013.05.096
[5] Hu, C.C., Hsu, T.C. and Lu, S.Y. (2013) Effect of Nitrogen Doping on the Microstructure and Visible Light Photocatalysis of Titanate Nanotubes by a Facile Cohydrothermal Synthesis via Urea Treatment. Applied Surface Science, 280, 171-178.
http://dx.doi.org/10.1016/j.apsusc.2013.04.120
[6] Li, Z.-P., Wen, Y.-Q., Shang, J.-P., Wu, M.-X., Wang, L.-F. and Guo, Y. (2014) Magnetically Recoverable Cu2O/Fe3O4 Composite Photocatalysts: Fabrication and Photocatalytic Activity. Chinese Chemical Letters, 25, 287-291.
http://dx.doi.org/10.1016/j.cclet.2013.10.023
[7] Saison, T. (2011) Bi2O3, BiVO4 and Bi2WO6: Impact of Surface Properties on Photo-Catalytic Activity under Visible Light. The Journal of Physical Chemistry, 115, 2-11.
[8] Zhang, L., Xu, S., Chen, G.X., Ma, X.L., Huang, Q. and Wu, T. (2013) Research on Microwave Conditions of Synthesis for Photo-Catalyst BiOI. Guangzhou Chemical Industry, 41.
[9] Xu, M.M., Zhao, Y.L. and Yan, Q.S. (2015) Efficient Visible-Light Photocatalytic Degradation of Sulfadiazine Sodium with Hierarchical Bi7O9I3 under Solar Irradiation. Water Science and Echnology, 72, 2122-2131.
http://dx.doi.org/10.2166/wst.2015.433
[10] Zhang, K.L., Liu, C.M., Huang, F.Q., et al. (2006) Study of the Electronic Structure and Photo-Catalytic Activity of the BiOCl Photo-Catalyst. Applied Catalysis B: Environmental, 68, 125-129.
[11] Zhang, L.Y., Yan, Q.S., Wang, Y.Y. and Zhang, R.Q. (2015) Degradation of Sulfadimethoxine and Products in Aqueous Solution by BiOI under Visible Light with H2O2. Synthesis and Reactivity in Inorganic, Met-al-Organic, and Nano-Metal Chemistry, 45, 1245-1250.
http://dx.doi.org/10.1080/15533174.2013.862682
[12] Dong, F., Sun, Y.J., Fu, M., Wu, Z.B. and Lee, S.C. (2012) Room Temperature Synthesis and Highly Enhanced Visible Light Photocatalytic Activity of Porous BiOI/BiOCl Composites Nanoplates Microflowers. Journal of Hazardous Materials, 219-220, 26-34.
[13] Zhang, L.W., Wang, Y.J., Cheng, H.Y., et al. (2009) Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible- Light-Active Photocatalysts. Advanced Materials, 21, 1286-1290.
http://dx.doi.org/10.1002/adma.200801354
[14] Xua, L.J. and Wang, J.L. (2015) Degradation of 2,4,6-Trichlorophenol Using Magnetic Nanoscaled Fe3O4/CeO2 Composite as a Heterogeneous Fenton-Like Catalyst. Separation and Purification Technology, 149, 255-264.
http://dx.doi.org/10.1016/j.seppur.2015.05.011
[15] Zhan, S.H., Zhu, D.D., Ma, S.L., Yu, W.C., Jia, Y.N., Li, Y., Yu, H.B. and Shen, Z.Q. (2015) Highly Efficient Removal of Pathogenic Bacteria with Magnetic Graphene Composite. ACS Applied Materials & Interfaces, 7, 4290-4298.
http://dx.doi.org/10.1021/am508682s
[16] Jafar Hoseini, S., Heidari, V. and Nasrabadi, H. (2015) Magnetic Pd/Fe3O4/Reduced-Graphene Oxide Nanohybrid as an Efficient and Recoverable Catalyst for Suzuki-Miyaura Coupling Reaction in Water. Journal of Molecular Catalysis A: Chemical, 396, 90-95.
http://dx.doi.org/10.1016/j.molcata.2014.09.009
[17] Wang, J.H., Wang, H., Jiang, J.J., et al. (2012) Nonpolar Solvothermal Fabrication and Electromagnetic Properties of Magnetic Fe3O4 Encapsulated Semimetal Bi Nanocomposites. Crystal Growth Design, 12, 3499-3504.
http://dx.doi.org/10.1021/cg300198r
[18] Wang, Y., Li, S.K., Xing, X.R., et al. (2011) Self-Assembled 3D Flow-erlike Hierarchical Fe3O4@Bi2O3 Core-Shell Architectures and Their Enhanced Photocatalytic Activity under Visible Light. Chemistry, 17, 4802-4808.
[19] Li, J.Z., Zhong, J.B., He, X.Y., et al. (2013) Enhanced Photocatalytic Activity of Fe2O3 Decorated Bi2O3. Applied Surface Science, 284, 527-532.
http://dx.doi.org/10.1016/j.apsusc.2013.07.128
[20] Li, X.W., Niu, C.G., Huang, D.W., Wang, X.Y., Zhang, X.G., Zeng, G.M. and Niu, Q.Y. (2013) Preparation of Magnetically Separable Fe3O4 /BiOI Nanocomposites and Its Visible Photocatalytic Activity. Applied Surface Science, 286, 40-46.
http://dx.doi.org/10.1016/j.apsusc.2013.08.139
[21] 朱遂一, 徐东方, 方帅, 耿直, 杨霞. 太阳光响应型Ag2S/Ag3PO4复合材料的制备及催化降解水杨酸[J]. Chem-cial Journal of Chinese Universities, 35, 1286-1292.