静电纺丝法制备尖晶石铁氧体纳米纤维的研究进展
Developments of Spinel Ferrite Nanofibers Fabricated by Electrospinning
DOI: 10.12677/MS.2016.64029, PDF, HTML, XML, 下载: 2,150  浏览: 4,790 
作者: 潘伟伟, 刘世华, 聂冬梅:贵州师范学院,物理与电子科学学院,贵州 贵阳
关键词: 尖晶石铁氧体静电纺丝纤维形貌磁性质离子掺杂Spinel Ferrite Electrospinning Nanofiers Morphology Magnetic Properties Ion Substitution
摘要: 静电纺丝技术是一种制备纳米纤维的新型方法,制备出的纳米纤维具有长径比高、比表面积大和直径分布均匀等优点。用静电纺丝法制备陶瓷类尖晶石铁氧体,需要加入煅烧的实验步骤,煅烧温度、升温速率等条件会影响尖晶石铁氧体纳米纤维的晶体结构、形貌、磁性质等。离子掺杂通过改变尖晶石铁氧体纳米纤维中的金属离子占位来影响铁氧体纳米纤维的磁性质。文中总结了用静电纺丝法制备尖晶石铁氧体纳米纤维的几个重要影响因素和几种典型的离子掺杂,为尖晶石铁氧体纳米纤维的应用提供可行性实验方法。
Abstract: Electrospinning technology is a novel method of preparing nanofibers, which have the advantages of high aspect ratio, large specific surface areas and uniform diameter distribution. In general, ce-ramic spinel ferrites are prepared by the electrospinning of precursors in the presence of polymers followed by calcination. The calcination conditions will influence the crystal structure, morphology and magnetic properties of spinel ferrite nanofibers, such as calcination temperature and heating rate. The effects of ion substitution on magnetic properties of spinel nanofibers are due to the change of cation distribution on A and B sites. This paper summed up several important influence factors and ion substitution in the preparation of spinel ferrite nanofibers by electrospinning, which provide a feasible experimental method for the application of spinel ferrite nanofiers.
文章引用:潘伟伟, 刘世华, 聂冬梅. 静电纺丝法制备尖晶石铁氧体纳米纤维的研究进展[J]. 材料科学, 2016, 6(4): 230-238. http://dx.doi.org/10.12677/MS.2016.64029

参考文献

[1] Li, D., Herricks, T. and Xia, Y.N. (2003) Magnetic Nanofibers of Nickel Ferrite Prepared by Electrospinning. Applied Physics Letters, 83, 4586-4588.
http://dx.doi.org/10.1063/1.1630844
[2] Ju, Y.W., Park, J.H., Jung, H.R., et al. (2008) Fabrication and Characterization of Cobalt Ferrite (CoFe2O4) Nanofibers by Electrospinning. Materials Science and Engineering B, 147, 7-12.
http://dx.doi.org/10.1016/j.mseb.2007.10.018
[3] Sangmanee, M. and Maensiri, S. (2009) Nanostructures and Magnetic Prop-erties of Cobalt Ferrite (CoFe2O4) Fabricated by Electrospinning. Applied Physics A: Materials Science & Processing, 97, 167-177.
http://dx.doi.org/10.1007/s00339-009-5256-5
[4] Ju, Y.W., Park, J.H., Jung, H.R., et al. (2008) Electrospun MnFe2O4 Nano-fibers: Preparation and Morphology. Composites Science and Technology, 68, 1704-1709.
http://dx.doi.org/10.1016/j.compscitech.2008.02.015
[5] Maensiri, S., Sangmanee, M. and Wiengmoon, A. (2009) Magnesium Ferrite (MnFe2O4) Nanostructure Fabricated by Electrospinning. Nanoscale Research Letters, 4, 221-228.
http://dx.doi.org/10.1007/s11671-008-9229-y
[6] Ponhan, W. and Maensiri, S. (2009) Fabrication and Magneitc Properties of Electrospun Copper Ferrite (CuFe2O4) Nanofibers. Solid State Sciences, 11, 479-484.
http://dx.doi.org/10.1016/j.solidstatesciences.2008.06.019
[7] Pan, W.W., Han, R., Chi, X., et al. (2013) Ferromagnetic Fe3O4 Nanofibers: Electrospinning Synthesis and Characterization. Journal of Alloys and Compounds, 577, 192-194.
http://dx.doi.org/10.1016/j.jallcom.2013.04.199
[8] Pan, W.W., Ma, Z., Liu, J.H., et al. (2011) Effect of Heating Rate on Morphology and Structure of CoFe2O4 Nanofibers. Materials Letters, 65, 3269-3271.
http://dx.doi.org/10.1016/j.matlet.2011.06.102
[9] Sharma, N., Jaffari, G.H., Shah, S.I., et al. (2010) Orientation-Dependent Magnetic Behavior in Aligned Nanoparticle Arrays Constructed by Coaxial Electrospinning. Nanotechnology, 21, 085707-6.
http://dx.doi.org/10.1088/0957-4484/21/8/085707
[10] Wang, S.H., Wang, C. and Zhang, B. (2010) Preparation of Fe3O4/PVA Nanofibers via Combining In-Situ Composite with Electrospinning. Materials Letters, 64, 9-11.
http://dx.doi.org/10.1016/j.matlet.2009.09.043
[11] Zhang, D., Karki, A.B., Rutman, D., et al. (2009) Electrospun Polyacrylo-nitrile Nanocomposite Fibers Reinforced with Fe3O4 Nanoparticles: Fabrication and Property Analysis. Polymer, 50, 4189-4198.
http://dx.doi.org/10.1016/j.polymer.2009.06.062
[12] Xiang, J., Shen, X.Q., Song, F.Z., et al. (2009) Fabrication and Magnetic Properties of Ni0.5Zn0.5Fe2O4 Nanofibres by Electrospinning. Chinese Physics B, 18, 4960-06.
http://dx.doi.org/10.1088/1674-1056/18/11/057
[13] Nam, J.H., Joo, Y.H. and Lee, J.H. (2009) Preparation of NiZn-Ferrite Nanofibers by Electrospinning for DNA Separation. Journal of Magnetism and Magnetic Materials, 321, 1389-1392.
http://dx.doi.org/10.1016/j.jmmm.2009.02.044
[14] Shen, X.Q., Xiang, J., Song, F.Z., et al. (2010) Characterization and Mag-netic Properties of Electrospun Co1−xZnxFe2O4 Nanofibers. Applied Physics A: Materials Science & Processing, 99, 189-195.
http://dx.doi.org/10.1007/s00339-009-5494-6
[15] Pan, W.W., Gu, F.M., Qi, K., et al. (2012) Effect of Zn Substitution on Morphology and Magnetic Properties of CuFe2O4 Nanofibers. Materials Chemistry and Physics, 134, 1097-1101.
http://dx.doi.org/10.1016/j.matchemphys.2012.03.118
[16] Xiang, J., Shen, X.Q., Song, F.Z., et al. (2010) One-Dimensional NiCuZn Ferrite Nanostructures: Fabrication, Structure, and Magnetic Properties. Journal of Solid State Chemistry, 183, 1239-1244.
http://dx.doi.org/10.1016/j.jssc.2010.03.041
[17] Guo, L.P., Shen, X.Q., Meng, X.F., et al. (2010) Effect of Sm3+ Ions Doping on Structure and Magnetic Properties of Nanocrystalline NiFe2O4 Fibers. Journal of Alloys and Compounds, 490, 301-306.
http://dx.doi.org/10.1016/j.jallcom.2009.09.182
[18] Pirouzfar, A. and Seyyed Ebrahimi, S.A. (2014) Optimization of Sol-Gel Synthesis of CoFe2O4 Nanowires Using Template Assisted Vacuum Suction Method. Journal of Magnetism and Magnetic Materials, 370, 1-5.
http://dx.doi.org/10.1016/j.jmmm.2014.06.058
[19] Sivakumar, P., Ramesh, R., Ramanand, A., et al. (2012) Preparation and Properties of NiFe2O4 Nanowires. Materials Letters, 66, 314-317.
http://dx.doi.org/10.1016/j.matlet.2011.09.005
[20] Harraz Farid, A. (2008) Polyethylene Glycol-Assisted Hydrothermal Growth of Magnetite Nanowires: Synthesis and Magnetic Properties. Physica E: Low-Dimensional Systems and Nanostructures, 40, 3131-3136.
http://dx.doi.org/10.1016/j.physe.2008.05.007