厄瓜多尔地震柱的构造与地震和火山的预测研究
The Structure of Ecuador Seismic Cone and the Prediction Research of Earthquakes and Volcanoes
DOI: 10.12677/OJNS.2016.43035, PDF, HTML, XML,  被引量 下载: 2,232  浏览: 6,578  科研立项经费支持
作者: 陈立军:湖南省地震局,湖南 长沙
关键词: 地震地热说地震柱壳下地震壳内强震火山厄瓜多尔Seismo-Geothermics Theory Seismic Cone Subcrustal Earthquake Intracrustal Strong Earthquake Volcano Ecuador
摘要: 按照地震地热说关于壳内强震与火山预测的方法,本文采用北加利福利亚地震数据中心的ANSS地震目录,Smithsonian Institution的GVP火山资料,对厄瓜多尔地震柱的地震活动与地震柱构造进行广泛研究,初步认为研究区内的地震柱构造结构表现为一种左手的手型结构,深源地震活动的韵律致使手型结构一张一弛,从而控制着地震柱的影响区内壳内强震与火山活动,火山喷发释放储能层的大量热能,壳内强震则力图疏通南美洲西北部的海沟,以保持手型结构活动的自由度。由于深源地震活动比地震柱构造影响区内的活动提前若干年,有足够的时间让人们做好心理准备。工作做好了,该地震柱内壳内强震与火山活动的预测便是可能的。厄瓜多尔地震柱构造虽然没有高精度的地震目录,但是构造结构单一,强震与火山活动的目标明确,也有某些成功预测的经验,因而具有优越的地震研究环境,值得人们关注。
Abstract: According to the Seismo-Geothermics theory about methods of intracrustal strong earthquake and volcano prediction, the ANSS earthquake catalogue from the Northern California earthquake data center and the GVP volcano data from the Smithsonian Institution, and extensive study of the seismic activities and the seismic cone structure in the Ecuador seismic cone, the author of this paper preliminarily thinks that the Ecuador seismic cone represents a left-hand structure, which the alternate tension with relaxation caused by deep seismic activity rhythm controls the intracrustal strong earthquakes and volcano activities in the earthquake affected area of the seismic cone. The volcano activities release the large heat energy of heat storage layer and the intracrustal strong earthquakes are trying to clear the trench in northwestern South America to keep the freedom of activity of hand type structure. Because deep seismic activity is several years earlier than the intracrustal earthquake activities of cone affected area, there is enough time for people to prepare, which allows the prediction of strong earthquake and volcanic activity in the crust in the seismic cone possible. Although there is no high precision earthquake catalogue in the Ecuador seismic cone, it has a single structure and clear aims of strong earthquakes and volcanic activities, and a successful prediction example. So it is a superior earthquake research environment, and is worth our attention.
文章引用:陈立军. 厄瓜多尔地震柱的构造与地震和火山的预测研究[J]. 自然科学, 2016, 4(3): 292-306. http://dx.doi.org/10.12677/OJNS.2016.43035

参考文献

[1] 陈立军. 中国地震震源深度与强震活动状态研究[J]. 地震地质, 2000, 22(4): 360-370.
[2] 陈立军. 地震地热说原理与应用[J]. 内陆地震, 2012, 26(2): 108-122.
[3] 陈立军. 地震柱的概念及其基本特征[J]. 华南地震, 2013, 33(1): 1-14.
[4] 陈立军, 胡奉湘, 陈晓逢. 全球地震柱的地震层析成像证据[J]. 华南地震, 2013, 33(4): 1-10.
[5] 陈立军. 2013年巴基斯坦7.7级地震与兴都库什的地震构造[J]. 内陆地震, 2015, 29(1): 15-27.
http://dx.doi.org/10.16256/j.issn.101-8956.2015.01.002
[6] 陈立军.青藏高原的地震构造与地震活动[J]. 地震研究, 2013, 36(1): 123-131.
[7] Chen, L.J., Chen, X.F., Wan, F.F., Li, P.Z. and Shao, L. (2015) Comparative Study of Global Seismicity on the Hot Engine Belt and the Cooling Seismic Belt—Improvement on Research Ideas of Earthquake Prediction. International Journal of Geosciences, 6, 741-749.
http://dx.doi.org/10.4236/ijg.2015.67060 http://blog.sciencenet.cn/blog-552558-912394.html
[8] Chen, L.J., Chen, X.F. and Shao, L. (2015) Method Research of Earthquake Prediction and Volcano Prediction in Italy. International Journal of Geosciences, 6, 963-971.
http://dx.doi.org/10.4236/ijg.2015.69076 http://blog.sciencenet.cn/blog-552558-920796.html
[9] Chen, L.J. (2016) Study on the Seismogenic Mechanism of the Earthquake Mw6.9 in 2014 in the Aegean Sea Seismic Cone. International Journal of Geosciences, 7, 669-684.
http://dx.doi.org/10.4236/ijg.2016.75052 http://blog.sciencenet.cn/blog-552558-979237.html
[10] 陈立军. 全球热机带和冷机带火山活动的比较研究—兼论对热机带火山预测研究思路的改进[J]. 地球科学前沿, 2015, 5(5): 334-357.
http://dx.doi.org/10.12677/AG.2015.55034
[11] 陈立军. 2012年0419预测卡片(3年期)的试验总结—地震地热说的壳内强震与火山预测方法介绍[J]. 自然科学, 2015, 3(4): 147-164.
http://dx.doi.org/10.12677/OJNS.2015.34019
[12] 陈立军. 全球主要地震柱3年期地震与火山预测卡片0419卡的有关说明[EB/OL]. http://blog.sciencenet.cn/blog-552558-883826.html, 2015-4-20.
[13] 陈立军. 全球地震预测研究区的划分[EB/OL]. http://blog.sciencenet.cn/blog-552558-797995.html, 2014-5-27.
[14] 陈立军. 壳下地震活动的研究[EB/OL]. http://blog.sciencenet.cn/blog-552558-649931.html, 2013-1-5.
[15] 陈立军. 全球部分地震柱的壳下地震活动图像[EB/OL]. http://blog.sciencenet.cn/blog-552558-650622.html, 2013-1-7.
[16] 陈立军. 全球部分地震柱的壳下地震活动图像(续)[EB/OL]. http://blog.sciencenet.cn/blog-552558-651045.html, 2013-1-8.
[17] 陈立军. 地震地热说原理—02北智利地震地幔柱[EB/OL]. http://blog.sciencenet.cn/blog-552558-433856.html, 2011-4-16.
[18] 陈立军. 地震地热说应用: 火山成因之9—南美洲和中美洲的火山研究[EB/OL]. http://blog.sciencenet.cn/blog-552558-458473.html, 2011-6-23.
[19] 陈立军. 南美洲和中美洲的地震活动性[EB/OL]. http://blog.sciencenet.cn/blog-552558-461872.html, 2011-7-3.
[20] Robert, T., Kellogg, J.N., Freymueller, J.T. and Mora, H.P. (2002) Wide Plate Margin Deformation, Southern Central America and Northwestern South America, CASA GPS Observations. Journal of South American Earth Sciences, 15, 157-171.
http://dx.doi.org/10.1016/S0895-9811(02)00018-4
[21] Egbue, O., Kellogg, J., Aguirre, H. and Torres, C. (2014) Evolution of the Stress and Strain Fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 58, 8-21.
http://dx.doi.org/10.1016/j.jsg.2013.10.004
[22] Fritz, E. and Estorff, V. (1946) Tectonic Framework of Northwestern South America. American Association of Petroleum Geologists Bulletin, 30, 581-590.
[23] Orlando, H.P., Frese, V. and Ralph, R. B. (2007) Crustal Thickness Variations and Seismicity of Northeasern South America. Earth Sciences Research Journal, 11, 81-94.
[24] Restrepo-Pace, P.A. and Cediel, F. (2010) Northern South America Basement Tectonics and Implications for Paleocontinental Reconstructions of the Americas. Journal of South American Earth Sciences, 29, 764-771.
http://dx.doi.org/10.1016/j.jsames.2010.06.002
[25] Font, Y., Segovia, M., Vaca, S., Theunissen, T. (2013) Seismicity Patterns along the Ecuadorian Subduction Zone: New Constraints from Earthquake Location in a 3-D a Priori Velocity Model. Geophysical Journal International, 193, 263-286.
http://dx.doi.org/10.1093/gji/ggs083
[26] Jiménezab, G., Speranzab, F., Faccenaa, C., Bayonac, G. and Morad, A. (2015) Magnetic Stratigraphy of the Bucaramanga Alluvial Fan: Evidence for a ≤ 3 mm/yr Slip Rate for the Bucaramanga-Santa Marta Fault, Colombia. Journal of South American Earth Sciences, 57, 12-22.
http://dx.doi.org/10.1016/j.jsames.2014.11.001
[27] Vander Lelij, R., Spikingsa, R. and Morab, A. (2016) Thermochronology and Tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 248-251, 220-239.
http://dx.doi.org/10.1016/j.lithos.2016.01.006
[28] Webera, M., Gómez-Tapiasb, J., Cardonac, A., Duartea, E., Pardo-Trujillod, A. and Valenciae, V.A. (2015) Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia—Evidence of Subduction Initiation Beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62, 257-274.
http://dx.doi.org/10.1016/j.jsames.2015.04.002
[29] Cardozoa, N., Montesb, C., Marína, D., Gutierreza, I. and Palenciac, A. (2016) Structural Analysis of the Tabaco Anticline, Cerrejón Open-Cast Coal Mine, Colombia, South America. Journal of Structural Geology, 87, 115-133.
http://dx.doi.org/10.1016/j.jsg.2016.04.010
[30] 陈立军. 地幔柱型火山喷发特征[EB/OL]. http://blog.sciencenet.cn/home.php?mod=space&uid=552558&do=blog&id=982026, 2016-6-2.
[31] Chen, L.J. (2013) Mantle Decadal Oscillation (MDO). http://blog.sciencenet.cn/blog-552558-665664.html
[32] 陈立军. 0419卡片传奇—001号火山频发验证记录[EB/OL]. http://blog.sciencenet.cn/blog-552558-646527.html, 2012-12-26.