|
[1]
|
TORKZABAN, S., HASSANIZADEH, S., SCHIJVEN, J., et al. Virus transport in saturated and unsaturated sand columns. Vadose Zone Journal, 2006, 5(3): 877-885. http://dx.doi.org/10.2136/vzj2005.0086 [Google Scholar] [CrossRef]
|
|
[2]
|
BERGENDAHL, J., GRASSO, D. Prediction of colloid detachment in a model porous media: Hydrodynamics. Chemical Engineering Science, 2000, 55(9): 1523-1532. http://dx.doi.org/10.1016/S0009-2509(99)00422-4 [Google Scholar] [CrossRef]
|
|
[3]
|
SHEN, C., LAZOUSKAYA, V., ZHANG, H., et al. Theoretical and experimental investigation of detachment of colloids from rough collector surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 98-110.
http://dx.doi.org/10.1016/j.colsurfa.2012.06.025[CrossRef]
|
|
[4]
|
TORKZABAN, S., BRADFORD, S. A., WAN, J., et al. Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time. Environmental Science & Technology, 2013, 47(20): 11528-11536.
http://dx.doi.org/10.1021/es402075f [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
EINAT, M., NOAM, W., YOSEPH, Y., et al. Colloid transport in porous media: Impact of hyper-saline solutions. Water Research, 2011, 45(11): 3521-3532. http://dx.doi.org/10.1016/j.watres.2011.04.021 [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
YAO, K.-M., HABIBIAN, M. T. and O’MELIA, C. R. Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 1971, 5(11): 1105-1112. http://dx.doi.org/10.1021/es60058a005 [Google Scholar] [CrossRef]
|
|
[7]
|
BRADFORD, S. A., SIMUNEK, J. and WALKER, S. L. Transport and straining of E. coli O157:H7 in saturated porous media. Water Resources Research, 2006, 42(12): W12S10. http://dx.doi.org/10.1029/2005WR004805 [Google Scholar] [CrossRef]
|
|
[8]
|
TONG, M., MA, H. and JOHNSON, W. P. Funneling of flow into grain-to-grain contacts drives colloid-colloid aggregation in the presence of an energy barrier. Environmental Science & Technology, 2008, 42(8): 2826-2832.
http://dx.doi.org/10.1021/es071888v [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
PACHEPSKY, Y., DEVIN, B., POLYANSKAYA, L., et al. Limited entrapment model to simulate the breakthrough of Arthrobacter and Aquaspirillum in soil columns. International Agrophysics, 2006, 20(3): 207.
|
|
[10]
|
FOPPEN, J. W., VAN HERWERDEN, M. and SCHIJVEN, J. Transport of Escherichia coli in saturated porous media: Dual mode deposition and intra-population heterogeneity. Water Research, 2007, 41(8): 1743-1753.
http://dx.doi.org/10.1016/j.watres.2006.12.041 [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
TONG, M., JOHNSON, W. P. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Environmental Science & Technology, 2007, 41(2): 493-499. http://dx.doi.org/10.1021/es061202j [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
LI, X., SCHEIBE, T. D. and JOHNSON, W. P. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: A general phenomenon. Environmental Science & Technology, 2004, 38(21): 5616-5625. http://dx.doi.org/10.1021/es049154v [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
BRADFORD, S. A., KIM, H. N., HAZNEDAROGLU, B. Z., et al. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environmental Science & Technology, 2009, 43(18): 6996-7002.
http://dx.doi.org/10.1021/es900840d [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
TUFENKJI, N., ELIMELECH, M. Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 2005, 21(3): 841-852. http://dx.doi.org/10.1021/la048102g [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
KNAPPETT, P., DU, J., LIU, P., et al. Importance of reversible attachment in predicting E. coli transport in saturated aquifers from column experiments. Advances in Water Resources, 2014, 63: 120-130.
http://dx.doi.org/10.1016/j.advwatres.2013.11.005[CrossRef] [PubMed]
|
|
[16]
|
RAMACHANDRAN, V., FOGLER, H. S. Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. Journal of Fluid Mechanics, 1999, 385(01): 129-156. http://dx.doi.org/10.1017/S0022112098004121 [Google Scholar] [CrossRef]
|
|
[17]
|
BRADFORD, S. A., TORKZABAN, S. and SHAPIRO, A. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir, 2013, 29(23): 6944-6952. http://dx.doi.org/10.1021/la4011357 [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
HERZIG, J., LECLERC, D. and GOFF, P. L. Flow of suspensions through porous media—Application to deep filtration. Industrial & Engineering Chemistry, 1970, 62(5): 8-35. http://dx.doi.org/10.1021/ie50725a003 [Google Scholar] [CrossRef]
|
|
[19]
|
BRADFORD, S. A., SIMUNEK, J., BETTAHAR, M., et al. Straining of colloids at textural interfaces. Water Resources Research, 2005, 41(10): W10404. http://dx.doi.org/10.1029/2004WR003675 [Google Scholar] [CrossRef]
|
|
[20]
|
DU, Y., SHEN, C., ZHANG, H. and HUANG, Y. Effects of flow velocity and nonionic surfactant on colloid straining in saturated porous media under unfavorable conditions. Transport in Porous Media, 2013, 98(1): 193-208.
http://dx.doi.org/10.1007/s11242-013-0140-3 [Google Scholar] [CrossRef]
|
|
[21]
|
SHEN, C., HUANG, Y., LI, B. and YAN, J. Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions. Water Resources Research, 2008, 44(5): W05419. http://dx.doi.org/10.1029/2007WR006580 [Google Scholar] [CrossRef]
|
|
[22]
|
XU, S., LIAO, Q. and SAIERS, J. E. Straining of nonspherical colloids in saturated porous media. Environmental Science & Technology, 2008, 42(3): 771-778. http://dx.doi.org/10.1021/es071328w [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
BRADFORD, S. A., YATES, S. R., BETTAHAR, M., et al. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 2002, 38(12): 63-1-63-12.
|
|
[24]
|
JOHNSON, W. P., MA, H. and PAZMINO, E. Straining credibility: A general comment regarding common arguments used to infer straining as the mechanism of colloid retention in porous media. Environmental Science & Technology, 2011, 45(9): 3831-3832. http://dx.doi.org/10.1021/es200868e [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
DUFFADAR, R., KALASIN, S., DAVIS, J. M. and SANTORE, M. M. The impact of nanoscale chemical features on micron-scale adhesion: Crossover from heterogeneity-dominated to mean-field behavior. Journal of Colloid and Interface Science, 2009, 337(2): 396-407. http://dx.doi.org/10.1016/j.jcis.2009.05.046 [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
KALASIN, S., SANTORE, M. Hydrodynamic crossover in dynamic microparticle adhesion on surfaces of controlled nanoscale heterogeneity. Langmuir, 2008, 24(9): 4435-4438. http://dx.doi.org/10.1021/la8000202 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
SHEN, C., LI, B., WANG, C., et al. Surface roughness effect on deposition of nano- and micro-sized colloids in saturated columns at different solution ionic strengths. Vadose Zone Journal, 2011, 10(3): 1071-1081.
http://dx.doi.org/10.2136/vzj2011.0011 [Google Scholar] [CrossRef]
|
|
[28]
|
SHEN, C., WANG, L.-P., LI, B., et al. Role of surface roughness in chemical detachment of colloids deposited at primary energy minima. Vadose Zone Journal, 2012, 11(1): 1-12. http://dx.doi.org/10.2136/vzj2011.0057 [Google Scholar] [CrossRef]
|
|
[29]
|
TORKZABAN, S., BRADFORD, S. A. Critical role of surface roughness on colloid retention and release in porous media. Water Research, 2016, 88: 274-284. http://dx.doi.org/10.1016/j.watres.2015.10.022[CrossRef] [PubMed]
|
|
[30]
|
BRADFORD, S. A., TORKZABAN, S. Colloid interaction energies for physically and chemically heterogeneous porous media. Langmuir, 2013, 29(11): 3668-3676. http://dx.doi.org/10.1021/la400229f [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
SPARKS, D. L. Environmental soil chemistry. Cambridge: Academic Press, 2003.
|
|
[32]
|
DUFFADAR, R. D., DAVIS, J. M. Interaction of micrometer-scale particles with nanotextured surfaces in shear flow. Journal of Colloid and Interface Science, 2007, 308(1): 20-29. http://dx.doi.org/10.1016/j.jcis.2006.12.068 [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
SHEN, C., LAZOUSKAYA, V., ZHANG, H., et al. Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433: 14-29.
http://dx.doi.org/10.1016/j.colsurfa.2013.04.048[CrossRef]
|
|
[34]
|
ADAMCZYK, Z., JASZCZółt, K., MICHNA, A., et al. Irreversible adsorption of particles on heterogeneous surfaces. Advances in Colloid and Interface Science, 2005, 118(1): 25-42. http://dx.doi.org/10.1016/j.cis.2005.03.003 [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
ROY, S. B., DZOMBAK, D. A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environmental Science & Technology, 1997, 31(3): 656-664. http://dx.doi.org/10.1021/es9600643 [Google Scholar] [CrossRef]
|
|
[36]
|
KOZLOVA, N., SANTORE, M. M. Manipulation of micrometer-scale adhesion by tuning nanometer-scale surface features. Langmuir, 2006, 22(3): 1135-1142. http://dx.doi.org/10.1021/la0515221 [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
MOLNAR, I. L, JOHNSON, W. P., GERHARD, J. I., et al. Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 2015, 51(9): 6804-6845. http://dx.doi.org/10.1002/2015WR017318 [Google Scholar] [CrossRef]
|
|
[38]
|
TORKZABAN, S., BRADFORD, S. A. and WALKER, S. L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir, 2007, 23(19): 9652-9660. http://dx.doi.org/10.1021/la700995e [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
ADAMCZYK, Z., SIWEK, B., ZEMBALA, M. and BELOUSCHEK, P. Kinetics of localized adsorption of colloid particles. Advances in Colloid and Interface Science, 1994, 48: 151-280. http://dx.doi.org/10.1016/0001-8686(94)80008-1[CrossRef]
|
|
[40]
|
BRADFORD, S. A., TORKZABAN, S. and WIEGMANN, A. Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization. Vadose Zone Journal, 2011, 10(1): 252-261. http://dx.doi.org/10.2136/vzj2010.0064 [Google Scholar] [CrossRef]
|
|
[41]
|
GUAN, H., SCHULZE-MAKUCH, D., SCHAFFER, S. and PILLAI, S. D. The effect of critical pH on virus fate and transport in saturated porous medium. Groundwater, 2003, 41(5): 701-708. http://dx.doi.org/10.1111/j.1745-6584.2003.tb02408.x [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
GHARABAGHI, B., SAFADOUST, A., MAHBOUBI, A., et al. Temperature effect on the transport of bromide and E. coli NAR in saturated soils. Journal of Hydrology, 2015, 522: 418-427. http://dx.doi.org/10.1016/j.jhydrol.2015.01.003[CrossRef]
|
|
[43]
|
殷宪强, 孙慧敏, 易磊, 等. 孔隙水流速对胶体在饱和多孔介质中运移的影响[J]. 水土保持学报, 2010, 24(5): 101-104.
YIN Xianqiang, SUN Huimin, YI Lei, et al. Effect of flowrate of pore water on the transport of colloid in sarutated porous media. Journal of Soil and Water Conservation, 2010, 24(5): 101-104. (in Chinese)
|
|
[44]
|
TORKZABAN, S., BRADFORD, S. A., VANDERZALM, J. L., et al. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. Journal of Contaminant Hydrology, 2015, 181: 161-171.
http://dx.doi.org/10.1016/j.jconhyd.2015.06.005[CrossRef] [PubMed]
|
|
[45]
|
BRADFORD, S. A., BETTAHAR, M. Concentration dependent transport of colloids in saturated porous media. Journal of Contaminant Hydrology, 2006, 82(1-2): 99-117. http://dx.doi.org/10.1016/j.jconhyd.2005.09.006 [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
李桂花, 李保国. 大肠杆菌在饱和砂土中的运移及其模拟[J]. 土壤学报, 2003, 40(5): 783-786.
LI Guihua, LI Baoguo. Transport of Escherichia coli through saturated sandy soil: experiments and modelling. Acta Pedologica Sinica, 2003, 40(5): 783-786. (in Chinese)
|
|
[47]
|
马雪姣, 金妍, 黄元仿, 等. 冠状病毒IBV和噬菌体MS2在饱和多孔介质中的运移规律[J]. 中国环境科学, 2007, 27(2): 255-259.
MA Xuejiao, JIN Yan, HUANG Yuanfang, et al. Transport of avian infectious bronchitis virus (IBV) and bacteriophage (MS2) in saturated porous media. China Environmental Science, 2007, 27(2): 255-259. (in Chinese)
|
|
[48]
|
高琼. 大肠杆菌在土壤中的迁移特性实验研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2011.
GAO Qiong. Experimental study of transport characteristics of E. coli in Soils. Tianjin: Tianjin University of Technology, 2011. (in Chinese)
|
|
[49]
|
PANG, L. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores. Journal of Environmental Quality, 2009, 38(4): 1531-1559. http://dx.doi.org/10.2134/jeq2008.0379 [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
BRADFORD, S. A., WANG, Y., TORKZABAN, S. and ŠIMŮNEK, J. Modeling the release of E. coli D21g with transients in water content. Water Resources Research, 2015, 51(5): 3303-3316. http://dx.doi.org/10.1002/2014WR016566 [Google Scholar] [CrossRef]
|
|
[51]
|
BRADFORD, S. A., TORKZABAN, S., KIM, H. and ŠIMŮNEK, J. Modeling colloid and microorganism transport and release with transients in solution ionic strength. Water Resources Research, 2012, 48(9): 77-86.
http://dx.doi.org/10.1029/2012WR012468 [Google Scholar] [CrossRef]
|
|
[52]
|
YANG, H., KIM, H. and TONG, M. Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids and Surfaces B: Biointerfaces, 2012, 91: 122-129. http://dx.doi.org/10.1016/j.colsurfb.2011.10.058[CrossRef] [PubMed]
|
|
[53]
|
FOPPEN, J. W, LIEM, Y. and SCHIJVEN, J. Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Research, 2008, 42(1): 211-219. http://dx.doi.org/10.1016/j.watres.2007.06.064 [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
HARVEY, R. W, METGE, D. W, BARBER, L. and AIKEN, G. R. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Water Research, 2010, 44(4): 1062-1071. http://dx.doi.org/10.1016/j.watres.2009.09.008 [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
WALSHE, G. E., PANG, L., FLURY, M., CLOSE, M. E. and FLINTOFT, M. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research, 2010, 44(4): 1255-1269. http://dx.doi.org/10.1016/j.watres.2009.11.034 [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
WEAVER, L., SINTON, L. W., PANG, L., DANN, R. and CLOSE, M. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field. Science of the Total Environment, 2013, 443: 55-64. http://dx.doi.org/10.1016/j.scitotenv.2012.09.049[CrossRef] [PubMed]
|
|
[57]
|
GUPTA, V., JOHNSON, W. P., SHAFIEIAN, P., et al. Riverbank filtration: comparison of pilot scale transport with theory. Environmental Science & Technology, 2009, 43(3): 669-676. http://dx.doi.org/10.1021/es8016396 [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
REYNOLDS, P., SHARMA, P., JENNEMAN, G., et al. Mechanisms of microbial movement in subsurface materials. Applied and Environmental Microbiology, 1989, 55(9): 2280-2286.
|
|
[59]
|
LUTTERODT, G., BASNET, M., FOPPEN, J. and UHLENBROOK, S. The effect of surface characteristics on the transport of multiple Escherichia coli isolates in large scale columns of quartz sand. Water Research, 2009, 43(3): 595-604.
http://dx.doi.org/10.1016/j.watres.2008.11.001 [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
STEVIK, T. K., AA, K., AUSLAND, G. and HANSSEN, J. F. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review. Water Research, 2004, 38(6): 1355-1367.
http://dx.doi.org/10.1016/j.watres.2003.12.024 [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
KIM, H. N., WALKER, S. L. and BRADFORD, S. A. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media. Water Research, 2010, 44(4): 1082-1093. http://dx.doi.org/10.1016/j.watres.2009.09.027 [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
KUZNAR, Z. A., ELIMELECH, M. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts. Langmuir, 2005, 21(2): 710-716. http://dx.doi.org/10.1021/la047963m [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
KUZNAR, Z. A., ELIMELECH, M. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment. Environmental Science & Technology, 2006, 40(6): 1837-1842. http://dx.doi.org/10.1021/es051859p [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
RIJNAARTS, H. H., NORDE, W., LYKLEMA, J. and ZEHNDER, A. J. B. DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerfaces, 1999, 14(1): 179-195.
http://dx.doi.org/10.1016/S0927-7765(99)00035-1 [Google Scholar] [CrossRef]
|
|
[65]
|
GARGIULO, G., BRADFORD, S., ŠIMŮNEK, J., et al. Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface protein. Journal of Contaminant Hydrology, 2007, 92(3): 255-273.
http://dx.doi.org/10.1016/j.jconhyd.2007.01.009 [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
GROLIMUND, D., ELIMELECH, M. and BORKOVEC, M. Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191(1): 179-188.
http://dx.doi.org/10.1016/S0927-7757(01)00773-7 [Google Scholar] [CrossRef]
|
|
[67]
|
GINN, T. R. On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: Theory and formulations for residence-time-dependent sorption/desorption with memory. Water Resources Research, 2000, 36(10): 2885-2893. http://dx.doi.org/10.1029/2000WR900170 [Google Scholar] [CrossRef]
|
|
[68]
|
BITTON, G., DAVIDSON, J. M. and FARRAH, S. On the value of soil columns for assessing the transport pattern of viruses through soils: A critical outlook. Water, Air, and Soil Pollution, 1979, 12(4): 449-457. http://dx.doi.org/10.1007/BF01046866 [Google Scholar] [CrossRef]
|
|
[69]
|
陈星欣, 白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667.
CHEN Xingxin, BAI Bing. Effect of gravity on transport of particles in saturated porous media. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667. (in Chinese)
|
|
[70]
|
HARTER, T., WAGNER, S. and ATWILL, E. R. Colloid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments. Environmental science & technology, 2000, 34(1): 62-70. http://dx.doi.org/10.1021/es990132w [Google Scholar] [CrossRef]
|
|
[71]
|
CHRYSIKOPOULOS, C. V., KATZOURAKIS, V. E. Colloid particle size-dependent dispersivity. Water Resources Research, 2015, 51: 4668-4683. http://dx.doi.org/10.1002/2014WR016094[CrossRef]
|
|
[72]
|
JIANG, G., NOONAN, M. J., BUCHAN, G. D., et al. Transport of Escherichia coli through variably saturated sand columns and modeling approaches. Journal of Contaminant Hydrology, 2007, 93(1-4): 2-20.
http://dx.doi.org/10.1016/j.jconhyd.2007.01.010 [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
TREUMANN, S., TORKZABAN, S., BRADFORD, S. A., et al. An explanation for differences in the process of colloid adsorption in batch and column studies. Journal of Contaminant Hydrology, 2014, 164: 219-229.
http://dx.doi.org/10.1016/j.jconhyd.2014.06.007[CrossRef] [PubMed]
|
|
[74]
|
CEY, E. E., RUDOLPH, D. L. Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils. Hydrological Processes, 2009, 23(12): 1768-1779. http://dx.doi.org/10.1002/hyp.7302 [Google Scholar] [CrossRef]
|
|
[75]
|
PANG, L., MCLEOD, M., AISLABIE, J., et al. Modeling transport of microbes in ten undisturbed soils under effluent irrigation. Vadose Zone Journal, 2008, 7(1): 97-111. http://dx.doi.org/10.2136/vzj2007.0108 [Google Scholar] [CrossRef]
|
|
[76]
|
ŠIMŮNEK, J., HE, C., PANG, L. and BRADFORD, S. A. Colloid-facilitated solute transport in variably saturated porous media. Vadose Zone Journal, 2006, 5(3): 1035-1047. http://dx.doi.org/10.2136/vzj2005.0151 [Google Scholar] [CrossRef]
|
|
[77]
|
SAFADOUST, A., MAHBOUBI, A., GHARABAGHI, B., et al. Bacterial filtration rates in repacked and weathered soil columns. Geoderma, 2011, 167: 204-213. http://dx.doi.org/10.1016/j.geoderma.2011.08.014[CrossRef]
|
|
[78]
|
WALL, K., PANG, L., SINTON, L. and CLOSE, M. Transport and attenuation of microbial tracers and effluent microorganisms in saturated pumice sand aquifer material. Water, Air, and Soil Pollution, 2008, 188(1-4): 213-224.
http://dx.doi.org/10.1007/s11270-007-9537-3 [Google Scholar] [CrossRef]
|
|
[79]
|
BOLSTER, C. H., MILLS, A. L., HORNBERGER, G. and HERMAN, J. Effect of intra-population variability on the long- distance transport of bacteria. Groundwater, 2000, 38(3): 370-375. http://dx.doi.org/10.1111/j.1745-6584.2000.tb00222.x [Google Scholar] [CrossRef]
|
|
[80]
|
ROY, S. B., DZOMBAK, D. A. Na+-Ca 2+ Exchange effects in the detachment of latex colloids deposited in glass bead porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 119(2): 133-139.
http://dx.doi.org/10.1016/S0927-7757(96)03764-8 [Google Scholar] [CrossRef]
|
|
[81]
|
SHEN, C., LAZOUSKAYA, V., Jin, Y., et al. Coupled factors influencing detachment of nano-and micro-sized particles from primary minima. Journal of Contaminant Hydrology, 2012, 134: 1-11. http://dx.doi.org/10.1016/j.jconhyd.2012.04.003[CrossRef] [PubMed]
|
|
[82]
|
FOPPEN, J. W. A., SCHIJVEN, J. F. Transport of E. coli in columns of geochemically heterogeneous sediment. Water Research, 2005, 39(13): 3082-3088. http://dx.doi.org/10.1016/j.watres.2005.05.023 [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
ŠIMŮNEK, J., ŠEJNA, M., SAITO, H., et al. The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.0, HYDRUS software series 3. Riverside: Department of Environmental Sciences, University of California Riverside, 2008: 315.
|
|
[84]
|
VAN GENUCHTEN, M. T., WAGENET, R. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Science Society of America Journal, 1989, 53(5): 1303-1310.
http://dx.doi.org/10.2136/sssaj1989.03615995005300050001x [Google Scholar] [CrossRef]
|
|
[85]
|
李桂花, 李保国. 大肠杆菌在饱和砂质壤土中非平衡运移的 CDE 数学模型模拟[J]. 土壤学报, 2006, 43(2): 197-202.
LI Guihua, LI Baoguo. Non-equilibrium transport of Escherichia coli through saturated sandy loam and its simulation with CDE model. Acta Pedologica Sinica, 2006, 43(2): 197-202. (in Chinese)
|
|
[86]
|
SCHIJVEN, J. F., HASSANIZADEH, S. M. Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology, 2000, 30(1): 49-127.
http://dx.doi.org/10.1080/10643380091184174 [Google Scholar] [CrossRef]
|
|
[87]
|
SCHIJVEN, J. F., HASSANIZADEH, S. M. and DE BRUIN, R. H. Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology, 2002, 57(3): 259-279.
http://dx.doi.org/10.1016/S0169-7722(01)00215-7 [Google Scholar] [CrossRef]
|
|
[88]
|
FEIGHERY, J., MAILLOUX, B. J., FERGUSON, A., et al. Transport of E. coli in aquifer sediments of Bangladesh: Implications for widespread microbial contamination of groundwater. Water Resources Research, 2013, 49(7): 3897-3911.
http://dx.doi.org/10.1002/wrcr.20289 [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
TUFENKJI, N., REDMAN, J. A. and ELIMELECH, M. Interpreting deposition patterns of microbial particles in laboratory-scale column experiments. Environmental Science & Technology, 2003, 37(3): 616-623.
http://dx.doi.org/10.1021/es025871i [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
BRADFORD, S., TORIDE, N. A stochastic model for colloid transport and deposition. Journal of Environmental Quality, 2007, 36(5): 1346-1356. http://dx.doi.org/10.2134/jeq2007.0004 [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
LEIJ, F. J., BRADFORD, S. A. Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids. Journal of Contaminant Hydrology, 2009, 110(3): 87-99.
http://dx.doi.org/10.1016/j.jconhyd.2009.09.004 [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
LEIJ, F. J., BRADFORD, S. A. Colloid transport in dual-permeability media. Journal of Contaminant Hydrology, 2013, 150: 65-76. http://dx.doi.org/10.1016/j.jconhyd.2013.03.010[CrossRef] [PubMed]
|
|
[93]
|
DÍAZ, J., RENDUELES, M. and DÍAZ, M. Straining phenomena in bacteria transport through natural porous media. Environmental Science and Pollution Research, 2010, 17(2): 400-409. http://dx.doi.org/10.1007/s11356-009-0160-2 [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
BRADFORD, S. A., SIMUNEK, J., BETTAHAR, M., et al. Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 2003, 37(10): 2242-2250. http://dx.doi.org/10.1021/es025899u [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
HOSSEINI, S. M., TOSCO, T. Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Research, 2013, 47(1): 326-338. http://dx.doi.org/10.1016/j.watres.2012.10.002 [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
BRADFORD, S. A., VAN GENUCHTEN, M. T. and ŠIMŮNEK, J. Modeling of colloid transport and deposition in porous media//Department of Earth Sciences. Proceedings of Workshop on Hydrus Applications, Netherlands: Utrecht University, 2005: 1.
|
|
[97]
|
SEN, T. K., DAS, D., KHILAR, K. C., et al. Bacterial transport in porous media: New aspects of the mathematical model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260(1): 53-62.
http://dx.doi.org/10.1016/j.colsurfa.2005.02.033 [Google Scholar] [CrossRef]
|