Nb掺杂SrTiO3的光学特性研究
The Study of Optical Properties of SrTiO3 Doped Nb
DOI: 10.12677/APP.2016.610027, PDF, HTML, XML, 下载: 2,415  浏览: 6,278  国家自然科学基金支持
作者: 石攀登*:天津工业大学理学院,天津
关键词: 超软赝势晶格几何结构能带结构态密度光学特性Ultrasoft Pseudopotential Geometry of the Lattice Band Structure Density of States Optical Properties
摘要: 本文主要根据第一性原理的方法并应用Material Studio中的CASTEP模块分别对SrTiO3以及Nb掺杂SrTiO3两种材料的能带结构和态密度进行了仿真计算,然后对其进行相应的分析最后得出其光学特性。分析结果表明,未掺杂时SrTiO3的价带顶主要是由O原子的2p态组成,它的导带底则主要由Ti 3d态贡献;SrTiO3是间接跃迁能带结构,带隙宽度约为1.8 eV。掺杂后系统的带宽为2.02 eV,为直接跃迁能带结构,且与掺杂前相比系统的折射率与静介电常数都有不同程度的增大。
Abstract: In this paper, based on first-principles method and application of the Material Studio CASTEP module, energy band structure and density of SrTiO3 and Nb-doped SrTiO3 materials were simulated, and we analyzed their energy bands structure and density of states and got the conclusion of optical properties. The analysis results show that the undoped SrTiO3 valence-band maximum is mainly composed by the 2p state of atom O, while the conduction band is mainly contributed by Ti 3d state; SrTiO3 is an indirect transition band structure, and the band width is about 1.8 eV. After doping, the SrTiO3 becomes a direct transition band structure with the band width of 2.02 eV, and the refractive index and static dielectric constant increase in different extent compared with before.
文章引用:石攀登. Nb掺杂SrTiO3的光学特性研究[J]. 应用物理, 2016, 6(10): 212-218. http://dx.doi.org/10.12677/APP.2016.610027

参考文献

[1] 孙丹峰, 季幼章. 压敏电阻与PTC热敏电阻配合使用[J]. 电源世界, 2015(1): 39-43.
[2] 王盛, 杭志宏, 陆申龙. 新型PTC热敏电阻的特性测量及其应用[J]. 大学物理, 2000, 19(6): 31-33.
[3] 何开全, 王志宽, 钟怡. 二十四所半导体工艺技术发展历程与展望[J]. 微电子学, 2008, 38(1): 17-22.
[4] 黄如, 黎明, 安霞, 等. 后摩尔时代集成电路的新器件技术[J]. 中国科学: 信息科学, 2012, 42(12): 1529-1543.
[5] 马秀莹. 新型超大规模集成电路(VLSI)直流参数自动测试系统[D]: [硕士学位论文]. 北京: 北京工业大学, 2005.
[6] 陈根祥, 陈笑, 高云舒, 等. 基于光学大规模集成芯片的通信光电子器件研究[C]//中国物理学会光物理专业委员会、中国光学学会基础光学专业委员会. 第十一届全国光学前沿问题讨论会会议论文摘要集. 中国物理学会光物理专业委员会、中国光学学会基础光学专业委员会, 2015: 1.
[7] 庄晟逸, 张竹霞, 黄慧, 等. 掺杂原子对α-Cr2O3结构稳定性和电子特性的第一性原理研究[J]. 应用物理, 2016, 6(5): 91-99.
[8] Gao, Y.C., Duan, C.G., Tang, X.D., et al. (2013) A First-Principles Study on the Intrinsic Asymmetric Ferroelectricity of the SrTiO3-BaTiO3-CaTiO3 Tricolor Superlattice at the Nanoscale. Journal of Physics: Condensed Matter, 25, 165901. http://dx.doi.org/10.1088/0953-8984/25/16/165901
[9] Behtash, M., Nazir, S., Wang, Y.Q. and Wang, K.S. (2016) Polarization Effects on the Interfacial Conductivity in LaAlO3/SrTiO3 Heterostructures: A First-Principles Study. Physical Chemistry Chemical Physics, 18, 6831-6838. http://dx.doi.org/10.1039/C5CP07581E
[10] Kimura, S., Yamauchi, J., Tsukada, M. and Watanabe, S. (1995) First-Principles Study on Electronic Structure of the (001) Surface of SrTiO3. Physical Review B, 51, 11049-11054. http://dx.doi.org/10.1103/PhysRevB.51.11049
[11] Son, W.J., Cho, E., Lee J.C. and Han, S. (2010) Hydrogen Adsorption and Carrier Generation in LaAlO3-SrTiO3 Heterointerfaces: A First-Principles Study. Journal of Physics: Condensed Matter, 22, 315501. http://dx.doi.org/10.1088/0953-8984/22/31/315501
[12] Song, G. and Zhang, W.Y. (2014) First-Principles Study on the Phase Diagram and Multiferroic Properties of (SrCoO3)1/(SrTiO3)1 Superlattices. Scientific Reports, 4, Article Number: 4564. http://dx.doi.org/10.1038/srep04564
[13] Yuk, S.F., and Asthagiri, A. (2015) A First-Principles Study of Pt Thin Films on SrTiO3(100): Support Effects on CO Adsorption. The Journal of Chemical Physics, 142, 124704. http://dx.doi.org/10.1063/1.4915521