GSK-3β对流感病毒在A549细胞中复制的影响
The Impact of GSK-3β on the Replication of Influenza Virus in A549 Cells
DOI: 10.12677/OJNS.2016.44045, PDF, HTML, XML,  被引量 下载: 1,825  浏览: 5,725  国家自然科学基金支持
作者: 戴新宪*:北京生物制品研究所有限责任公司,北京;张丽姝, 韩鸿雅:北京交通大学理学院,北京
关键词: 病毒学流感病毒细胞凋亡糖原合成激酶-3β病毒与宿主相互作用Virology Influenza Virus Cell Apoptosis Glycogen Synthase Kinase-3β Viral-Host Interaction
摘要: 目的:明确GSK-3β在流感病毒感染过程中所发挥的作用。方法:我们应用RNA干扰技术下调GSK-3β的表达水平后,用TCID50法测定A549细胞上清中的流感病毒滴度,并使用CCK-8细胞活力检测试剂盒和Caspase-Glo凋亡检测试剂盒检测了GSK-3β对流感病毒感染A549细胞活力及流感病毒诱导的A549细胞凋亡的影响。结果:下调GSK-3β的表达降低了流感病毒感染A549细胞上清中的病毒滴度,并且GSK-3β的表达下调还降低了流感病毒感染A549细胞的细胞活力同时增强了流感病毒诱导的细胞凋亡。结论:GSK-3β对流感病毒诱导的宿主细胞凋亡具有负调节作用并且是病毒在细胞中高效复制所必需的。
Abstract: Objective: In order to clarify the role of glycogen synthase kinase-3β (GSK-3β) in the process of influenza virus infection. Methods: We preformed the RNAi to knock down the GSK-3β gene expression, then we determined the virus titers in the A549 cell supernatants by performing TCID 50 assay, and examined the influence of GSK-3β to cell viabilities of the infected cells as well as the influenza virus-induced A549 cell apoptosis using CCK-8 Kit and Caspase-Glo 3/7 Kit. Results: The results demonstrated that down-regulation of GSK3 expression decreased the viral titers in the A549 cells supernatants. Down-regulation of GSK-3β expression decreased the A549 cell viability, at the same time, increased the influenza virus induced cell apoptosis. Conclusion: Hence, GSK-3β negatively regulated the influenza virus-induced host cell apoptosis, and it was essential for the efficient replication of influenza virus.
文章引用:戴新宪, 张丽姝, 韩鸿雅. GSK-3β对流感病毒在A549细胞中复制的影响[J]. 自然科学, 2016, 4(4): 371-377. http://dx.doi.org/10.12677/OJNS.2016.44045

参考文献

[1] Embi, N., Rylatt, D.B. and Cohen, P. (1980) Glycogen Synthase Kinase-3 from Rabbit Skeletal Muscle. Separation from Cyclic-AMP-Dependent Protein Kinase and Phosphorylase Kinase. European Journal of Biochemistry, 107, 519- 527.
http://dx.doi.org/10.1111/j.1432-1033.1980.tb06059.x
[2] Rylatt, D.B., Aitken, A., Bilham, T., Condon, G.D., Embi, N. and Cohen, P. (1980) Glycogen Synthase from Rabbit Skeletal Muscle. Amino Acid Sequence at the Sites Phosphorylated by Glycogen Synthase Kinase-3, and Extension of the N-Terminal Sequence Containing the Site Phosphorylated by Phosphorylase Kinase. European Journal of Biochemistry, 107, 529-537.
http://dx.doi.org/10.1111/j.1432-1033.1980.tb06060.x
[3] Jope, R.S. and Johnson, G.V. (2004) The Glamour and Gloom of Glycogen Synthase Kinase-3. Trends in Biochemical Sciences, 29, 95-102.
http://dx.doi.org/10.1016/j.tibs.2003.12.004
[4] Beurel, E. and Jope, R.S. (2006) The Paradoxical Pro- and An-ti-Apoptotic Actions of GSK3 in the Intrinsic and Extrinsic Apoptosis Signaling Pathways. Progress in Neurobiology, 79, 173-189.
http://dx.doi.org/10.1016/j.pneurobio.2006.07.006
[5] Chin, P.C., Majdzadeh, N. and D’Mello, S.R. (2005) Inhibition of GSK3β Is a Common Event in Neuroprotection by Different Survival Factors. Molecular Brain Research, 137, 193-201.
http://dx.doi.org/10.1016/j.molbrainres.2005.03.004
[6] Shin, S.Y., Kim, C.G., Jho, E.-H., Rho, M.-S., Kim, Y.S., Kim, Y.-H. and Lee, Y.H. (2004) Hydrogen Peroxide Negatively Modulates Wnt Signaling through Downregulation of β-Catenin. Cancer Letters, 212, 225-231.
http://dx.doi.org/10.1016/j.canlet.2004.03.003
[7] Srinivasan, S., Ohsugi, M., Liu, Z., Fatrai, S., Bernal-Mizrachi, E. and Permutt, M.A. (2005) Endoplasmic Reticulum Stress-Induced Apoptosis Is Partly Mediated by Reduced Insulin Signaling through Phosphatidylinositol 3-Kinase/Akt and Increased Glycogen Synthase Kinase-3β in Mouse Insulinoma Cells. Diabetes, 54, 968-975.
http://dx.doi.org/10.2337/diabetes.54.4.968
[8] Watcharasit, P., Bijur, G.N., Song, L., Zhu, J., Chen, X. and Jope, R.S. (2003) Glycogen Synthase Kinase-3β (GSK3β) Binds to and Promotes the Actions of p53. The Journal of Biological Chemistry, 278, 48872-48879.
http://dx.doi.org/10.1074/jbc.M305870200
[9] Watcharasit, P., Bijur, G.N., Zmijewski, J.W., Song, L., Zmijewska, A., Chen, X., Johnson, G.V.W. and Jope, R.S. (2002) Direct, Activating Interaction between Glycogen Synthase Kinase-3β and p53 after DNA Damage. Proceedings of the National Academy of Sciences of the United States of America, 99, 7951-7955.
http://dx.doi.org/10.1073/pnas.122062299
[10] Song, L., Zhou, T. and Jope, R.S. (2004) Lithium Facilitates Apoptotic Signaling Induced by Activation of the Fas Death Domain-Containing Receptor. BMC Neuroscience, 5, 1-7.
http://dx.doi.org/10.1186/1471-2202-5-20
[11] Bournat, J.C., Brown, A.M.C. and Soler, A.P. (2000) Wnt-1 Dependent Activation of the Survival Factor NF-κB in PC12 Cells. Journal of Neuroscience Research, 61, 21-32.
http://dx.doi.org/10.1002/1097-4547(20000701)61:1<21::AID-JNR3>3.0.CO;2-7
[12] Ciani, L. and Salinas, P.C. (2005) WNTs in the Vertebrate Nervous System: From Patterning to Neuronal Connectivity. Nature Reviews. Neuroscience, 6, 351-362.
http://dx.doi.org/10.1038/nrn1665
[13] Zmijewski, J.W. and Jope, R.S. (2004) Nuclear Accumulation of Glycogen Synthase Kinase-3 during Replicative Senescence of Human Fibroblasts. Aging Cell, 3, 309-317.
http://dx.doi.org/10.1111/j.1474-9728.2004.00117.x
[14] Ehrhardt, C., Wolff, T., Pleschka, S., Planz, O., Beermann, W., Bode, J.G., Schmolke, M. and Ludwig, S. (2007) Influenza A Virus NS1 Protein Activates the PI3K/Akt Pathway to Mediate Antiapoptotic Signaling Responses. Journal of Virology, 81, 3058-3067.
http://dx.doi.org/10.1128/JVI.02082-06