铝–空气电池用阳极铝合金的掺杂改性
Modification of Aluminum-Air Battery Alloy Anodes by Doping Methods
DOI: 10.12677/MEng.2016.34019, PDF, HTML, XML,  被引量 下载: 1,941  浏览: 4,526 
作者: 马瑞新, 张晓勇, 李 祥, 李士娜, 杨 帆, 赵伟双:北京科技大学冶金与生态工程学院,北京
关键词: 铝–空气电池铝合金阳极电化学性能微合金 Al-Air Batteries Aluminum Anode Electrochemical Performance Micro-Alloying
摘要: 在Al-0.5Mg (0.5%Mg)、Al-0.5Mg-0.2In (0.5%Mg 0.2%In)两种合金中添加不同含量的Zn元素,通过多种分析测试方法,来探究Zn、In元素对合金阳极合金组织、腐蚀性能、放电性能、电化学性能的影响,并分析得出最优的合金成分。In元素对于本实验的试样是一种非常重要的元素,加入In后,铝合金阳极活化能力、电化学性能显著提高,开路电位、放电电压快速稳定;铝合金缺陷减少,表面氧化膜变得疏松且不完整;析氢自腐蚀变弱,腐蚀速率明显降低,腐蚀表面平整。Zn则能够细化合金晶粒,使铝合金组织变得致密,减少合金缺陷,抑制铝合金析氢自腐蚀;但会降低铝合金活性,随着Zn含量的增加,开路电位、放电电压正移。当In含量为0.2%,Zn含量为0.2%时,Al-0.5Mg-0.2In-0.2Zn合金具有最好的综合性能,其OCP (Open Circuit Potential)为−1.716 V (vs. Hg/HgO),腐蚀速率为0.064 mg•cm−2•min−1,10 mA恒流放电单体电池电压可达1.527 V。
Abstract: In this paper, two alloys of Al-0.5Mg (0.5% Mg) and Al-0.5Mg-0.2In (0.5% Mg 0.2% In) were added with Zn of different contents. Through a variety of analysis methods, the impact of Zn and In ele-ment on alloy structure, corrosion property, discharge performance, and electrochemical perfor-mance of alloy anode, has been explored, and the optimal alloy composition has also been obtained by analysis. In plays an important role in this experiment; after In adding, the activation capacity of aluminum alloy anode and the electrochemical performance were enhanced significantly, while the open circuit potential and the discharge voltage were rapidly stabilized; aluminum alloy defects were reduced, and surface oxide film became loose and incomplete; hydrogen evolution corrosion weakened significantly and corrosion rate lowered. Zn can refine alloy grain, so as to make aluminum alloy organization dense, reduce the alloy defects and inhibit hydrogen evolution corrosion, but at the same time it would reduce aluminum alloy activity, and the open circuit potential and discharge voltage would positively shift as the increasing content of Zn. With the In content of 0.2% and Zn content of 0.2%, Al-0.5Mg-0.2In-0.2Zn alloy has the best overall performance; its Open Circuit Potential (OCP) is −1.716 V (vs. Hg/HgO); the corrosion rate is 0.064 mg•cm−2•min−1; and 10-mA constant discharge cell voltage can reach to 1.527 V.
文章引用:马瑞新, 张晓勇, 李祥, 李士娜, 杨帆, 赵伟双. 铝–空气电池用阳极铝合金的掺杂改性[J]. 冶金工程, 2016, 3(4): 132-142. http://dx.doi.org/10.12677/MEng.2016.34019

参考文献

[1] 史鹏飞, 尹鸽平, 夏保佳, 等. 三瓦铝-空气电池的研究[J]. 电池, 1992, 22(4): 152-154.
[2] 史鹏飞, 尹鸽平, 夏保佳, 等. 1千瓦铝空气电池的研究[J]. 电源技术, 1993, 33(1): 11-17.
[3] 卢凌彬, 唐有根, 王来稳. 锌对铝铟阳极的影响[J]. 电源技术, 2003, 27(3): 274-277.
[4] 齐公台, 张盈盈. 电池用含稀土铝合金阳极性能的研究[J]. 稀有金属, 2004, 28(6): 1010-1014.
[5] 张燕, 宋玉苏. 碱性介质中 Al-Ga-Sn-Mg的阳极行为研究[J]. 腐蚀与防护, 2005, 26(4): 143-146.
[6] 张盈盈, 齐公台, 刘斌, 等. Al-Ga-Mg 合金组织与阳极性能研究[J]. 中国腐蚀与防护学报, 2005, 25(6): 336-339.
[7] 韩红涛. 稀土对铝合金阳极结构与性能的影响[D]: [硕士学位论文]. 长沙: 中南大学, 2006: 23-51.
[8] 游文, 林顺岩. 新型铝合金阳极在NaOH碱性溶液中的腐蚀行为[J]. 科苑论坛《铝加工》, 2006, 168(3): 15-18.
[9] 尹延西, 李卿, 江洪林, 等. Al-Ga-In-Bi-Pb合金在NaOH溶液中的电化学行为[J]. 电池, 2008, 38(2): 70-72.
[10] 王乃光, 王日初, 彭超群, 等. 合金元素对铝阳极材料电化学性能和显微组织的影响[J]. 中南大学学报(自然科学版), 2010, 41(2): 495-500.
[11] 张纯, 王日初, 冯艳, 等. 合金元素对铝阳极电化学性能的影响[J]. 中南大学学报(自然科学版), 2012, 43(1): 81-86.
[12] 邵海洋, 文九巴, 马景灵, 等. 微量硅对 Al-In-Mg-Sn阳极合金电化学性能的影响[J]. 腐蚀与防护, 2013, 34(9): 786-789.
[13] 熊亚琪. 铝-空气电池的基础研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014: 19-42.
[14] 王诚, 邱平达, 蔡克迪, 等. 铝空气电池关键技术研究进展[J]. 化工进展, 2016, 35(5): 1396-1403.
[15] 卢凌彬, 唐有根, 王来稳. 锌对铝铟阳极的影响[J]. 电源技术, 2003, 27(3): 274-277.