基于Logistic增长、药物治疗和潜伏感染的HIV模型研究
Study on the HIV Model Based on Logistic Growth, Drug Treatment and Latent Infection
DOI: 10.12677/AAM.2016.54067, PDF, HTML, XML, 下载: 2,174  浏览: 5,142  科研立项经费支持
作者: 周漫, 车欣, 范雪萌, 肖林伟, 王艳:中国石油大学(华东)理学院,山东 青岛
关键词: HIV病毒潜伏感染药物治疗Logistic增长HIV Virus Latent Infection Drug Treatment Logistic Growth
摘要: 本文根据HIV在感染者体内的感染过程,建立具有Logistic增长、药物治疗和潜伏感染的HIV动力学模型来模拟感染过程中病毒颗粒、T细胞和药物治疗之间的相互关系;然后运用微分方程的稳定性理论,对模型进行全局动力学分析;最后建立对比模型,分析得到了更真实的HIV感染过程,进而研究HIV的感染机理。
Abstract: According to HIV infection process in infected individuals, this paper establishes HIV dynamics model of logistic growth, drug treatment and latent infection, to simulate the relationship among virus particles, T cells and drug treatment in the infection process. Then the stability theory of differential equations is used to analyze and discuss the global dynamics of the model. Finally by the way of comparatively analyzing different models, we get a more realistic process of HIV infection, which is benefit to research the mechanism of HIV infection.
文章引用:周漫, 车欣, 范雪萌, 肖林伟, 王艳. 基于Logistic增长、药物治疗和潜伏感染的HIV模型研究[J]. 应用数学进展, 2016, 5(4): 577-590. http://dx.doi.org/10.12677/AAM.2016.54067

参考文献

[1] Khan, S.Z., Hand, N. and Zeichner, S.L. (2015) Apoptosis-Induced Activation of HIV-1 in Latently Infected Cell Lines. Retrovirology, 12, 42. https://doi.org/10.1186/s12977-015-0169-1
[2] 刘叔文, 潘晓彦, 赵伟. HIV治愈: 潜伏HIV的清除及其策略[J]. 遵义医学院学报, 2015, 38(2): 105-110.
[3] Rong, L. and Perelson, A.S. (2008) Asymmetric Division of Activated Latently Infected Cells May Explain the Decay Kinetics of the HIV-1 Latent Reservoir and Intermittent Viral Blips. Mathematical Biosciences, 217, 77-87. https://doi.org/10.1016/j.mbs.2008.10.006
[4] 闫银翠, 王稳地. 考虑CTL免疫作用的HIV感染模型的全局动力学性态[J]. 西南大学学报(自然科学版), 2011 33(5): 22-27.
[5] Rong, L. and Perelson, A.S. (2009) Modeling Latently Infected Cell Activation: Viral and Latent Reservoir Persistence, and Viral Blips in HIV-Infected Patients on Potent Therapy. Theoretical Biology and Biophysics, 5, e1000533. https://doi.org/10.1371/journal.pcbi.1000533
[6] Lv, C.F., Huang, L.H. and Yuan, Z,H. (2014) Global stability for an HIV-1 infection model with beddington–deangelis incidence rate and CTL immune response. Communications in Nonlinear Science and Numerical Simulatio, 19, 121-127. http://dx.doi.org/10.1016/j.cnsns.2013.06.025
[7] Pankavich, S. (2015) The Effects of Latent Infection on the Dynamics of HIV. Differential Equations and Dynamical Systems, 24, 281-303. https://doi.org/10.1007/s12591-014-0234-6