|
[1]
|
Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198. http://dx.doi.org/10.1029/1999JD900837 [Google Scholar] [CrossRef]
|
|
[2]
|
Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840. http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x [Google Scholar] [CrossRef]
|
|
[3]
|
Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106. http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x [Google Scholar] [CrossRef]
|
|
[4]
|
Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28. http://dx.doi.org/10.1007/bf00328895 [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158. http://dx.doi.org/10.1038/38229 [Google Scholar] [CrossRef]
|
|
[6]
|
Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454.
http://dx.doi.org/10.1007/s004420050468 [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469. http://dx.doi.org/10.1016/b978-012614440-6/50014-8 [Google Scholar] [CrossRef]
|
|
[8]
|
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651.
http://dx.doi.org/10.1126/science.1060143 [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168. http://dx.doi.org/10.1016/S0031-0182(01)00357-1 [Google Scholar] [CrossRef]
|
|
[10]
|
Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20. http://dx.doi.org/10.1007/BF00328894 [Google Scholar] [CrossRef]
|
|
[11]
|
Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883.
http://dx.doi.org/10.2134/agronj1991.00021962008300050020x [Google Scholar] [CrossRef]
|
|
[12]
|
Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528.
http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x [Google Scholar] [CrossRef]
|
|
[13]
|
Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x [Google Scholar] [CrossRef]
|
|
[14]
|
Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11.
http://dx.doi.org/10.1111/jipb.12370 [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988. http://dx.doi.org/10.2307/1939421 [Google Scholar] [CrossRef]
|
|
[16]
|
Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96. http://dx.doi.org/10.2307/2390094 [Google Scholar] [CrossRef]
|
|
[17]
|
Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867. http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x [Google Scholar] [CrossRef]
|
|
[18]
|
Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20. http://dx.doi.org/10.1007/BF00009958 [Google Scholar] [CrossRef]
|
|
[19]
|
Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24. http://dx.doi.org/10.1016/S1360-1385(00)01813-6 [Google Scholar] [CrossRef]
|
|
[21]
|
Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621. http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x [Google Scholar] [CrossRef]
|
|
[23]
|
Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341. http://dx.doi.org/10.1007/s004420051019 [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440. http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x [Google Scholar] [CrossRef]
|
|
[25]
|
Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963 [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967.
http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x [Google Scholar] [CrossRef]
|
|
[27]
|
Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140. http://dx.doi.org/10.1086/513493 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153.
http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x [Google Scholar] [CrossRef]
|
|
[29]
|
Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137. http://dx.doi.org/10.1111/nph.13566 [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.
|
|
[31]
|
Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667.
http://dx.doi.org/10.1093/jxb/eru193 [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397. http://dx.doi.org/10.1038/ncb1387 [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566.
http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x [Google Scholar] [CrossRef]
|
|
[34]
|
Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265. http://dx.doi.org/10.1007/s00468-004-0375-2 [Google Scholar] [CrossRef]
|
|
[35]
|
Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397.
http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x [Google Scholar] [CrossRef]
|
|
[36]
|
Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194. http://dx.doi.org/10.2307/1937386 [Google Scholar] [CrossRef]
|
|
[37]
|
Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. http://dx.doi.org/10.1016/0169-5347(96)81060-3 [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734.
http://dx.doi.org/10.1104/pp.94.4.1728 [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239. http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x [Google Scholar] [CrossRef]
|
|
[40]
|
Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19.
http://dx.doi.org/10.1007/BF00377192 [Google Scholar] [CrossRef]
|
|
[41]
|
Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695.
http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576. http://dx.doi.org/10.2307/2389571 [Google Scholar] [CrossRef]
|
|
[43]
|
Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. http://dx.doi.org/10.1038/20859 [Google Scholar] [CrossRef]
|
|
[44]
|
Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869. http://dx.doi.org/10.1038/35038000 [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395.
http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620.
http://dx.doi.org/10.1093/jexbot/53.369.609 [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871. http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x [Google Scholar] [CrossRef]
|
|
[48]
|
Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689. http://dx.doi.org/10.1104/pp.118.2.683 [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638. http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x [Google Scholar] [CrossRef]
|
|
[50]
|
Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781. http://dx.doi.org/10.1093/jxb/39.12.1771 [Google Scholar] [CrossRef]
|
|
[51]
|
Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139. http://dx.doi.org/10.1093/jxb/43.8.1131 [Google Scholar] [CrossRef]
|
|
[52]
|
Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198. http://dx.doi.org/10.1029/1999JD900837 [Google Scholar] [CrossRef]
|
|
[53]
|
Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840. http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x [Google Scholar] [CrossRef]
|
|
[54]
|
Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106. http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x [Google Scholar] [CrossRef]
|
|
[55]
|
Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28. http://dx.doi.org/10.1007/bf00328895 [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158. http://dx.doi.org/10.1038/38229 [Google Scholar] [CrossRef]
|
|
[57]
|
Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454.
http://dx.doi.org/10.1007/s004420050468 [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469. http://dx.doi.org/10.1016/b978-012614440-6/50014-8 [Google Scholar] [CrossRef]
|
|
[59]
|
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651.
http://dx.doi.org/10.1126/science.1060143 [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168. http://dx.doi.org/10.1016/S0031-0182(01)00357-1 [Google Scholar] [CrossRef]
|
|
[61]
|
Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20. http://dx.doi.org/10.1007/BF00328894 [Google Scholar] [CrossRef]
|
|
[62]
|
Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883.
http://dx.doi.org/10.2134/agronj1991.00021962008300050020x [Google Scholar] [CrossRef]
|
|
[63]
|
Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528.
http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x [Google Scholar] [CrossRef]
|
|
[64]
|
Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x [Google Scholar] [CrossRef]
|
|
[65]
|
Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11.
http://dx.doi.org/10.1111/jipb.12370 [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988. http://dx.doi.org/10.2307/1939421 [Google Scholar] [CrossRef]
|
|
[67]
|
Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96. http://dx.doi.org/10.2307/2390094 [Google Scholar] [CrossRef]
|
|
[68]
|
Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867. http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x [Google Scholar] [CrossRef]
|
|
[69]
|
Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20. http://dx.doi.org/10.1007/BF00009958 [Google Scholar] [CrossRef]
|
|
[70]
|
Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24. http://dx.doi.org/10.1016/S1360-1385(00)01813-6 [Google Scholar] [CrossRef]
|
|
[72]
|
Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621. http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x [Google Scholar] [CrossRef]
|
|
[74]
|
Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341. http://dx.doi.org/10.1007/s004420051019 [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440. http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x [Google Scholar] [CrossRef]
|
|
[76]
|
Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963 [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967.
http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x [Google Scholar] [CrossRef]
|
|
[78]
|
Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140. http://dx.doi.org/10.1086/513493 [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153.
http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x [Google Scholar] [CrossRef]
|
|
[80]
|
Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137. http://dx.doi.org/10.1111/nph.13566 [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.
|
|
[82]
|
Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667.
http://dx.doi.org/10.1093/jxb/eru193 [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397. http://dx.doi.org/10.1038/ncb1387 [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566.
http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x [Google Scholar] [CrossRef]
|
|
[85]
|
Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265. http://dx.doi.org/10.1007/s00468-004-0375-2 [Google Scholar] [CrossRef]
|
|
[86]
|
Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397.
http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x [Google Scholar] [CrossRef]
|
|
[87]
|
Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194. http://dx.doi.org/10.2307/1937386 [Google Scholar] [CrossRef]
|
|
[88]
|
Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. http://dx.doi.org/10.1016/0169-5347(96)81060-3 [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734.
http://dx.doi.org/10.1104/pp.94.4.1728 [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239. http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x [Google Scholar] [CrossRef]
|
|
[91]
|
Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19.
http://dx.doi.org/10.1007/BF00377192 [Google Scholar] [CrossRef]
|
|
[92]
|
Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695.
http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576. http://dx.doi.org/10.2307/2389571 [Google Scholar] [CrossRef]
|
|
[94]
|
Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. http://dx.doi.org/10.1038/20859 [Google Scholar] [CrossRef]
|
|
[95]
|
Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869. http://dx.doi.org/10.1038/35038000 [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395.
http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620.
http://dx.doi.org/10.1093/jexbot/53.369.609 [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871. http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x [Google Scholar] [CrossRef]
|
|
[99]
|
Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689. http://dx.doi.org/10.1104/pp.118.2.683 [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638. http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x [Google Scholar] [CrossRef]
|
|
[101]
|
Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781. http://dx.doi.org/10.1093/jxb/39.12.1771 [Google Scholar] [CrossRef]
|
|
[102]
|
Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139. http://dx.doi.org/10.1093/jxb/43.8.1131 [Google Scholar] [CrossRef]
|
|
[103]
|
Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198. http://dx.doi.org/10.1029/1999JD900837 [Google Scholar] [CrossRef]
|
|
[104]
|
Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840. http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x [Google Scholar] [CrossRef]
|
|
[105]
|
Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106. http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x [Google Scholar] [CrossRef]
|
|
[106]
|
Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28. http://dx.doi.org/10.1007/bf00328895 [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158. http://dx.doi.org/10.1038/38229 [Google Scholar] [CrossRef]
|
|
[108]
|
Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454.
http://dx.doi.org/10.1007/s004420050468 [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469. http://dx.doi.org/10.1016/b978-012614440-6/50014-8 [Google Scholar] [CrossRef]
|
|
[110]
|
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651.
http://dx.doi.org/10.1126/science.1060143 [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168. http://dx.doi.org/10.1016/S0031-0182(01)00357-1 [Google Scholar] [CrossRef]
|
|
[112]
|
Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20. http://dx.doi.org/10.1007/BF00328894 [Google Scholar] [CrossRef]
|
|
[113]
|
Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883.
http://dx.doi.org/10.2134/agronj1991.00021962008300050020x [Google Scholar] [CrossRef]
|
|
[114]
|
Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528.
http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x [Google Scholar] [CrossRef]
|
|
[115]
|
Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x [Google Scholar] [CrossRef]
|
|
[116]
|
Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11.
http://dx.doi.org/10.1111/jipb.12370 [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988. http://dx.doi.org/10.2307/1939421 [Google Scholar] [CrossRef]
|
|
[118]
|
Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96. http://dx.doi.org/10.2307/2390094 [Google Scholar] [CrossRef]
|
|
[119]
|
Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867. http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x [Google Scholar] [CrossRef]
|
|
[120]
|
Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20. http://dx.doi.org/10.1007/BF00009958 [Google Scholar] [CrossRef]
|
|
[121]
|
Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x [Google Scholar] [CrossRef] [PubMed]
|
|
[122]
|
Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24. http://dx.doi.org/10.1016/S1360-1385(00)01813-6 [Google Scholar] [CrossRef]
|
|
[123]
|
Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621. http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x [Google Scholar] [CrossRef]
|
|
[125]
|
Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341. http://dx.doi.org/10.1007/s004420051019 [Google Scholar] [CrossRef] [PubMed]
|
|
[126]
|
Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440. http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x [Google Scholar] [CrossRef]
|
|
[127]
|
Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767. http://dx.doi.org/10.1098/rstb.2001.0963 [Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967.
http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x [Google Scholar] [CrossRef]
|
|
[129]
|
Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140. http://dx.doi.org/10.1086/513493 [Google Scholar] [CrossRef] [PubMed]
|
|
[130]
|
Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153.
http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x [Google Scholar] [CrossRef]
|
|
[131]
|
Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137. http://dx.doi.org/10.1111/nph.13566 [Google Scholar] [CrossRef] [PubMed]
|
|
[132]
|
Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.
|
|
[133]
|
Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667.
http://dx.doi.org/10.1093/jxb/eru193 [Google Scholar] [CrossRef] [PubMed]
|
|
[134]
|
Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397. http://dx.doi.org/10.1038/ncb1387 [Google Scholar] [CrossRef] [PubMed]
|
|
[135]
|
Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566.
http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x [Google Scholar] [CrossRef]
|
|
[136]
|
Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265. http://dx.doi.org/10.1007/s00468-004-0375-2 [Google Scholar] [CrossRef]
|
|
[137]
|
Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397.
http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x [Google Scholar] [CrossRef]
|
|
[138]
|
Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194. http://dx.doi.org/10.2307/1937386 [Google Scholar] [CrossRef]
|
|
[139]
|
Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. http://dx.doi.org/10.1016/0169-5347(96)81060-3 [Google Scholar] [CrossRef] [PubMed]
|
|
[140]
|
Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734.
http://dx.doi.org/10.1104/pp.94.4.1728 [Google Scholar] [CrossRef] [PubMed]
|
|
[141]
|
Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239. http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x [Google Scholar] [CrossRef]
|
|
[142]
|
Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19.
http://dx.doi.org/10.1007/BF00377192 [Google Scholar] [CrossRef]
|
|
[143]
|
Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695.
http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x [Google Scholar] [CrossRef] [PubMed]
|
|
[144]
|
Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576. http://dx.doi.org/10.2307/2389571 [Google Scholar] [CrossRef]
|
|
[145]
|
Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. http://dx.doi.org/10.1038/20859 [Google Scholar] [CrossRef]
|
|
[146]
|
Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869. http://dx.doi.org/10.1038/35038000 [Google Scholar] [CrossRef] [PubMed]
|
|
[147]
|
Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395.
http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x [Google Scholar] [CrossRef] [PubMed]
|
|
[148]
|
Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620.
http://dx.doi.org/10.1093/jexbot/53.369.609 [Google Scholar] [CrossRef] [PubMed]
|
|
[149]
|
Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871. http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x [Google Scholar] [CrossRef]
|
|
[150]
|
Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689. http://dx.doi.org/10.1104/pp.118.2.683 [Google Scholar] [CrossRef] [PubMed]
|
|
[151]
|
Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638. http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x [Google Scholar] [CrossRef]
|
|
[152]
|
Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781. http://dx.doi.org/10.1093/jxb/39.12.1771 [Google Scholar] [CrossRef]
|
|
[153]
|
Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139. http://dx.doi.org/10.1093/jxb/43.8.1131 [Google Scholar] [CrossRef]
|