Au纳米颗粒/BFO/ZnO复合结构的光电化学性质的提高
The Enhancement of Au Nanoparticles/ BFO/ZnO Composite Structure at Photoelectrochemical Properties
DOI: 10.12677/APP.2016.611029, PDF, HTML, XML, 下载: 2,002  浏览: 3,319  国家自然科学基金支持
作者: 古寿林*, 吴星波, 刘 凯:苏州大学物理与光电能源学部,江苏 苏州
关键词: Au纳米颗粒BFO薄膜ZnO过渡层光电化学性能Au Nanoparticles Thin BFO Films ZnO Buffer Layer Photoelectrochemical Properties
摘要: 本文通过磁控溅射技术在ITO导电玻璃上制备了多晶的铁酸铋(BFO)薄膜,并负载了适量的Au纳米颗粒来提高样品的光电流。Au纳米颗粒的表面等离子共振效应以及金属/半导体界面处形成的肖特基势垒均有利于提高电子-空穴对的分离。10 nm ZnO过渡层的引入使得BFO薄膜表面的平整度,致密性,结晶度得到了很好的改善,从而减小了BFO薄膜的漏电流,提高了BFO薄膜的剩余极化。BFO薄膜经过极化后产生的退极化场也促进了电子-空穴对的分离,减少了光生载流子的复合,从而可以获得更好的光电化学性能。
Abstract: Polycrystalline BiFeO3 (BFO) film was synthesized on the ITO conductive glass by magnetron sputtering technique, and the appropriate amount of gold nanoparticle (Au Nps) was successfully loaded to improve the photocurrent of the sample. The surface plasma resonance (LSPR) effect of gold nanoparticles, and the formation of the Schottky barrier of metal/semiconductor interface are beneficial to accelerate the separation of electronic-hole. The BFO/10 nm ZnO films show denser and smoother surface and higher degree crystallization, which is beneficial to reduce the leakage current density and achieve larger double-remant-polarization value. The generation of depolarization field by polaring BFO film also promotes the separation of the electronic-hole, and prevents the rapid recombination of photogenic charge carrier, which can obtain better photoelectrochemical properties.
文章引用:古寿林, 吴星波, 刘凯. Au纳米颗粒/BFO/ZnO复合结构的光电化学性质的提高[J]. 应用物理, 2016, 6(11): 227-238. http://dx.doi.org/10.12677/APP.2016.611029

参考文献

[1] Basu. S.R., Martin, L.W., Chu, Y.H., Gajek, M., Ramesh, R., Rai, R.C., and Xu, X. (2008) Photoconductivity in BiFeO3 Thin Films. Applied Physics Letters, 92, 091905.
http://dx.doi.org/10.1063/1.2887908
[2] Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V. and Cheong, S.W. (2009) Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science, 324, 63-66.
http://dx.doi.org/10.1126/science.1168636
[3] Liu, Q., Zhou, Y., You, L., Wang, J.L., Shen, M.R. and Fang, L. (2016) Enhanced Ferroelectric Photoelectrochemical Properties of Polycrystalline BiFeO3 Film by Decorating with Ag Nanoparticles. Applied Physics Letters, 108, 022902.
http://dx.doi.org/10.1063/1.4939747
[4] Wang, C.Y., Cao, D.W., Zheng, F.G., Dong, D., Fang, L., Su, X.D. and Shen, M.R. (2013) Photocathodic Behavior of Ferroelectric Pb(Zr,Ti)O3 Films Decorated with Silver Nanoparticles. Chemical Communications, 49, 3769-3771.
http://dx.doi.org/10.1039/c3cc38545k
[5] Niu, F., Chen, D., Qin, L.S., Gao, T., Zhang, N., et al. (2015) Synthesis of Pt/BiFeO3 Heterostructured Photocatalysts for Highly Efficient Visible-Light Photocatalytic Performances. Solar Energy Materials & Solar Cells, 143, 386-396.
http://dx.doi.org/10.1016/j.solmat.2015.07.008
[6] Ge, L. (2008) Novel Visible-Light-Driven Pt/BiVO4 Photocatalyst for Efficient Degradation of Methyl Orange. Journal of Molecular Catalysis A: Chemical, 282, 62-66.
http://dx.doi.org/10.1016/j.molcata.2007.11.017
[7] Khan, R., Yun, J.H., Bae, K.B. and Lee, I.H. (2016) Enhanced Photoluminescence of ZnO Nanorods via Coupling with Localized Surface Plasmon of Au Nanoparticles. Journal of Alloys and Compounds, 682, 643-646.
http://dx.doi.org/10.1016/j.jallcom.2016.05.036
[8] Zhang, Y., Cai, Z.Y. and Ma, X.M. (2015) Photocatalysis Enhancement of Au/BFO Nanoparticles Using Plasmon Resonance of Au NPs. Physica B: Condensed Matter, 479, 101-106.
http://dx.doi.org/10.1016/j.physb.2015.09.045
[9] Ge, L. (2008) Novel Pd/BiVO4 Composite Photocatalysts for Efficient Degradation of Methyl Orange under Visible light Irradiation. Materials Chemistry and Physics, 107, 465-470.
http://dx.doi.org/10.1016/j.matchemphys.2007.08.016
[10] Zhang, L., Zhou, L.Q., Yang, K.Z., Gao, D.D., Huang, C., Chen, Y.F., Zhang, F., Xiong, X., Li, L. and Xia, Q.H. (2016) Pd-Ni Nanoparticles Supported on MIL-101 as High-Performance Catalysts for Hydrogen Generation from Ammonia Borane. Journal of Alloys and Compounds, 677, 87-95.
http://dx.doi.org/10.1016/j.jallcom.2016.03.234
[11] Jo, S.H., Lee, S.G. and Lee, Y.H. (2012) Ferroelectric Properties of PZT/BFO Multilayerthin Films Prepared Using the Sol-Gel Method. Nanoscale Research Letters, 7, 54.
http://dx.doi.org/10.1186/1556-276X-7-54
[12] Singh, A.,Khan, Z.R., Vilarinho, P.M., Gupta, V. and Katiyar, R.S. (2014) Influence of Thickness on Optical and Structural Properties of BiFeO3 Thin Films: PLD Grown. Materials Research Bulletin, 49, 531-536.
http://dx.doi.org/10.1016/j.materresbull.2013.08.050
[13] Fan, Z., Yao, K. and Wang, J. (2014) Photovoltaic Effect in an Idium-Tin-Oxide/ZnO/BiFeO3/Pt Heterostructure. Applied Physics Letters, 105, 162903.
http://dx.doi.org/10.1063/1.4899146
[14] Zhang, M., Jiang, C.X., Dong, W., Zheng, F.G., Fang, L., Su, X.D. and Shen, M.R. (2013) Composition Dependence of the Photochemical Reduction of Ag+ by As-Grown Pb(ZrxTi1−x)O3 Films on Indium Tin Oxide Electrode. Applied Physics Letters, 103, 501-509.
http://dx.doi.org/10.1063/1.4819490
[15] Hu, Y., Zhang, A.Q., Li, H.J., Qian, D.J. and Chen, M. (2016) Synthesis, Studyand Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures. Nanoscale Research Letters, 11, 209.
http://dx.doi.org/10.1186/s11671-016-1435-4
[16] Luo, Y., Kong, F., Li, C., Shi, J., Lv, W. and Wang, W. (2016) One-Pot Preparation of Reduced Graphene Oxide- Carbon Nanotubedecorated with Au Nanoparticles Based on Protein for Non-Enzymaticelectrochemical Sensing of Glucose. Sensors and Actuators B: Chemical, 234, 625-632.
http://dx.doi.org/10.1016/j.snb.2016.05.046
[17] Fan, R., Min, J., Li, Y., Su, X., Zou, S., Wang, X. and Shen, M. (2015) N-Type Silicon Photocathodes with Al-Doped Rear P+ Emitter and Al2O3-Coated Front Surface for Efficient and Stable H2 Production. Applied Physics Letters, 106, Article ID: 213901.
http://dx.doi.org/10.1063/1.4921845
[18] De Lourdes Ruiz Peralta, M. and Sanchez, U.R. (2012) Photoluminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave-Assisted Chemical Synthesis. ACS Applied Materials & Interfaces, 4, 4807-4816.
[19] Dutta, S., Pandey, A., Jindal, K. and Gupta, V. (2015) Optical Properties of Pb (Zr0.52Ti0.48) O3/BiFeO3 Multilayerswith ZnO Buffer Layer. Applied Physics A, 120, 53-58.
http://dx.doi.org/10.1007/s00339-015-9168-2
[20] Dutta, S., Pandey, A., Yadav, I., Thakur, O.P., Laishram, R., Pal, R. and Chatterjee, R. (2012) Improved Electrical Properties of PbZrTiO3/BiFeO3 Multilayers with ZnO Buffer Layer. Journal of Applied Physics, 112, Article ID: 084101.
http://dx.doi.org/10.1063/1.4759123
[21] Yu, S., Chen, R., Zhang, G., Cheng, J. and Meng, Z. (2006) Ferroelectric Enhancement in Heterostructured ZnO/BiFeO3-PbTiO3 Film. Applied Physics Letters, 89, Article ID: 212906.
http://dx.doi.org/10.1063/1.2393004
[22] Lee, Y.H., Wu, J., Chen, Y., Lu, Y. and Lin, H. (2005) Surface Chemistry and Nanoscale Characterizations of Multiferroic BiFeO3 Thin Films. Electrochemical and Solid-State Letters, 8, F43-F46.
http://dx.doi.org/10.1149/1.2035697
[23] Cao, D., Wang, Z., Wen, L., Mi, Y. and Lei, Y. (2014) Switchable Charge-Transfer in the Photoelectrochemical Energy Conversion Process of Ferroelectric BiFeO3 Photoelectrodes. Angewandte Chemie, 53, 11027-11031.
http://dx.doi.org/10.1002/anie.201406044
[24] Ji, W., Yao, K., Lim, Y. and Suwardi, A. (2013) Epitaxial Ferroelectric BiFeO3 Thin Films for Unassisted Photocatalytic Watersplitting. Applied Physics Letters, 103, Article ID: 062901.
http://dx.doi.org/10.1063/1.4817907
[25] Torimoto, T., Horibe, H. and Kameyama, T. (2011) Plasmon-Enhanced Photocatalytic Activity of Cadmium SulfideNanoparticle Immobilized on Silica-Coated Gold Particles. Journal of Physical Chemistry Letters, 2, 2057-2062.
http://dx.doi.org/10.1021/jz2009049
[26] Wang, H., You, T., Shi, W., Li, J. and Guo, L. (2012) Au/TiO2/Au as a Plasmonic Coupling Photocatalyst. Journal of Physical Chemistry C, 116, 6490-6494.
http://dx.doi.org/10.1021/jp212303q
[27] She, Z.W., Liu, S., Low, M., Zhang, S.-Y. and Liu, Z. ()2012 Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Advanced Materials, 24, 2310-2314.
http://dx.doi.org/10.1002/adma.201104241