薄膜中的扩散与应力模型
Models of Diffusion and Stress in Thin Films
DOI: 10.12677/MS.2016.66053, PDF, HTML, XML, 下载: 2,343  浏览: 6,555  国家自然科学基金支持
作者: 林 冰, 戴钟保, 高梦滢, 王江涌:汕头大学物理系,广东 汕头
关键词: 扩散扩散系数扩散致应力应力致扩散Diffusion Diffusion Coefficient Diffusion-Induced Stress Stress-Induced Diffusion
摘要: 扩散会产生应力,而产生的或内禀的应力又会影响扩散,这在薄膜材料中表现的尤为突出。本文介绍了常见的几个扩散模型和应力模型,并通过热力学的方法推导出了应力条件下的扩散方程。随后采用有限元差分方法模拟了不同应力模型下的扩散分布。
Abstract: Diffusion of atoms in the materials can cause stress, and the produced and/or intrinsic stress may influence the diffusion process, which is more pronounced in the thin films. In this paper, some common diffusion and stress models are summarized and the diffusion equations under stress are deduced based on the thermodynamics. The diffusion profiles with different stress models are then simulated by the finite difference method.
文章引用:林冰, 戴钟保, 高梦滢, 王江涌. 薄膜中的扩散与应力模型[J]. 材料科学, 2016, 6(6): 413-431. http://dx.doi.org/10.12677/MS.2016.66053

参考文献

[1] Louthan, M.R., Caskey, G.R., Donovan, J.A.,, Rawl Jr., D.E. (1972) Hydrogen Embrittlement of Metals. Materials Science and Engineering, 10, 357-368. https://doi.org/10.1016/0025-5416(72)90109-7
[2] Shih, D.S., Robertson, I.M. and Birnbaum, H.K. (1988) Hydrogen Embrittlement of α Titanium: In Situ TEM Studies. Acta Metallurgica, 36, 111-124. https://doi.org/10.1016/0001-6160(88)90032-6
[3] 张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007: 489-493.
[4] 张在玉, 陈秀华. Cu在CoN和CoSiN薄膜中的扩散研究[J]. 怀化学院学报, 2013, 32(5): 27-32.
[5] 王玉中, 赵寿南. 硅扩散应力的理论分析[J]. 华南理工大学学报: 自然科学版, 1995, 23(12): 38-45.
[6] Baker, D.R., Verbrugge, M.W. and Bower, A. (2016) Thermodynamics, Stress, and Stefan-Maxwell Dif-fusion in Solids: Application to Small-Strain Materials Used in Commercial Lithium-Ion Batteries. Journal of Solid State Electrochemistry, 20, 163-181. https://doi.org/10.1007/s10008-015-3012-7
[7] Diaz, A., Alegre, J. and Cuesta, I.I. (2016) A Review on Diffusion Modelling in Hydrogen Related Failures of Metals. Engineering Failure Analysis, 66, 577-595. https://doi.org/10.1016/j.engfailanal.2016.05.019
[8] Fick, A. (1855) Ueber Diffusion. Annalen der Physik, 170, 59-86. https://doi.org/10.1002/andp.18551700105
[9] Graham, T. (1950) The Bakerian Lecture: On the Diffusion of Liquids. Philosophical Transactions of the Royal Society of London Series A, 140, 1-46. https://doi.org/10.1098/rstl.1850.0001
[10] Roberts-Austen, W.C. (1896) Bakerian Lecture: On the Diffusion in Metals. Philosophical Transactions of the Royal Society of London Series A, 187, 383-415. https://doi.org/10.1098/rsta.1896.0010
[11] Arrhenius, S. (1889) Über die Reaktionsgeschwindigkeitbei der Inversion von Rohrzuckerdurch Säuren. Zeitschrift für Physikalische Chemie, 4, 226-248.
[12] Peterson, N.L. and Rothman, S.J. (1970) Impurity Diffusion in Aluminum. Physical Review B, 1, 3264-3273. https://doi.org/10.1103/PhysRevB.1.3264
[13] Salamon, M. and Mehrer, H. (2005) Interdiffusion, Kirkendall Effect, and Al Self-Diffusion in Iron-Aluminiumalloys. Zeitschrift fur Metallkunde, 96, 4-16. https://doi.org/10.3139/146.018071
[14] Shewmon, P. (1989) Diffusion in Solids. The Minerals, Metals & Materials Society, Diffusion in Solids. 2nd Edition, Retroactive Coverage, United States, 246.
[15] Crank, J. (1975) The Math-ematics of Diffusion. 2nd Edition, Clarendon Press, Clarendon.
[16] 潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 1998.
[17] 林福民. 数学物理方法简明教程[M]. 北京: 北京大学出版社, 2008.
[18] 胡敏. 扩散方程高精度加权差分格式的MATLAB实现[J]. 四川文理学院学报, 2014, 24(5):15-18.
[19] 常旭, 石伟. 基于 MATLAB 的渗氮扩散数值模拟程序[J]. 热处理技术与装备, 2015, 36(5): 9-15.
[20] Boltzmann, L. (1894) Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten. Wiedemann’s Annalen, 53, 959-964.
[21] Matano, C. (1933) On the Relation between the Diffusion-Coefficients and Concentrations of Solid Metals (The Nickel-Copper System). Japanese Journal of Physics, 8, 109-113.
[22] Chen, J., Zhang, C., Wang, J., et al. (2015) Thermodynamic Description, Diffusivities and Atomic Mobilities in Binary Ni-Os System. Calphad, 50, 118-125. https://doi.org/10.1016/j.calphad.2015.06.001
[23] Kirkaldy, J.S. (1957) Diffusion in Multicomponent Metallic Systems. Canadian Journal of Physics, 35, 435-440. https://doi.org/10.1139/p57-047
[24] 王常珍. 冶金物理化学研究方法[J]. 北京: 冶金工业出版杜, 1982: 307.
[25] 杨绮琴, 刘冠昆. 金属在其合金相中扩散系数的测定[J]. 稀有金属, 1992, 16(1): 18-21.
[26] 赵长伟, 马沛生, 何明霞. 液相扩散系数测定方法的近期研究进展[J]. 化学工业与工程, 2002, 19(5): 374-379.
[27] 吴永炘, 文效忠, 杨志雄, 等. 镀层中基体金属扩散系数的测定[J]. 电镀与涂饰, 1999(4): 008.
[28] Brown, R. (1828) A Brief Ac-count of Microscopical Observations Made in the Months of June, July and August 1827, on the Particles Contained in the Pollen of Plants, and on the General Existence of Active Molecules in Organic and Inorganic Bodies. Philosophical Magazine Series 2, 4, 161-173. https://doi.org/10.1080/14786442808674769
[29] Mehrer, H. and Stolwijk, N.A. (2009) Heroes and Highlights in the History of Diffusion. Diffusion Fundamentals, 11, 1-32.
[30] Narasimhan, T.N. (2009) The Dichotomous History of Diffusion. Physics Today, 62, 48-53.
[31] Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärmegeforderte Bewegung von in ruhenden Flussigkeitensuspendierten Teilchen. Annalen der Physik, 322, 549-560. https://doi.org/10.1002/andp.19053220806
[32] Von Smoluchowski, M. (1906) Zurkinetischentheorie der brownschenmolekularbewegung und der suspensionen. Annalen der Physik, 326, 756-780. https://doi.org/10.1002/andp.19063261405
[33] Perrin, J. (1908) La loi de Stokes et le mouvementbrownien. Comptesrendus, 147, 475-476.
[34] Groh, J. (1920) Die Selbstdiffusionsgeschwindigkeit des geschmolzenen Bleis. Annalen der Physik, 368, 85-92. https://doi.org/10.1002/andp.19203681705
[35] Groh, J. (1921) Die Selbstdiffusion in festem Blei. Annalen der Physik, 370, 216-222. https://doi.org/10.1002/andp.19213701103
[36] Kirkendall, T.D., Thomassen, L. and Upthegrove, C. (1939) Rates of Diffusion of Copper and Zinc in Alpha Brass. Transaction of American Institute of Mining, Metallurgical, and Petro-leum Engineers, 133, 186-203.
[37] Darken, L.S. (2010) Diffusion, Mobility and Their Interrelation through Free En-ergy in Binary Metallic Systems. Metallurgical and Materials Transactions A, 41, 545-555.
[38] Le Claire, A.D. (1951) Grain Boundary Diffusion in Metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 468-474. https://doi.org/10.1080/14786445108561177
[39] Fisher, J.C. (1951) Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22, 74-77. https://doi.org/10.1063/1.1699825
[40] Hoffman, R.E. and Turnbull, D. (1951) Lattice and Grain Boundary Self-Diffusion in Silver. Journal of Applied Physics, 22, 634-639. https://doi.org/10.1063/1.1700021
[41] Viljoen, E.C., Du Plessis, J., Swart, H.C. and van Wyk, G.N. (1995) Sn Bulk-to-Surface Diffusion in a Cu (111)(Sn) Single Crystal. Surface Science, 342, 1-10. https://doi.org/10.1016/0039-6028(95)00684-2
[42] Wang, J.Y., Du Plessis, J., Terblans, J.J. and van Wyk, G.N. (1999) Kinetics near the Discontinuous Surface Transition in the Cu (Ag)(111) Binary Segregating System. Surface Science, 423, 12-18. https://doi.org/10.1016/S0039-6028(98)00819-X
[43] Wang, J.Y., Du Plessis, J., Terblans, J.J. and van Wyk, G.N. (1999) The Discontinuous Surface Transition in the Cu (111)(Ag) Binary Segregating System. Surface Science, 419, 197-206. https://doi.org/10.1016/S0039-6028(98)00790-0
[44] Laughlin, D. and Cahn, J. (1975) Spinodal Decompo-sition in Age Hardening Copper-Titanium Alloys. Acta Metallurgica, 23, 329-339. https://doi.org/10.1016/0001-6160(75)90125-X
[45] 胡赓祥, 等编著. 材料科学基础(第三版) [M]. 上海: 上海交通大学出版社, 2010.
[46] Thornton, J. and Hoffman, D. (1989) Stress-Related Effects in Thin Films. Thin Solid Films, 171, 5-31. https://doi.org/10.1016/0040-6090(89)90030-8
[47] 邵珊珊. 力及力–电耦合作用下微结构中扩散, 应力和变形分析[D]: [博士学位论文]. 上海: 华东理工大学, 2011.
[48] Prussin, S. (1961) Generation and Distribution of Disloca-tions by Solute Diffusion. Journal of Applied Physics, 32, 1876-1881. https://doi.org/10.1063/1.1728256
[49] Li, J.C.M. (1978) Physical Chemistry of Some Microstructural Phenomena. Metallurgical Transactions A, 9, 1353- 1380. https://doi.org/10.1007/BF02661808
[50] Larche, F. and Cahn, J.W. (1973) A Linear Theory of Thermochemical of Solids under Stress. Acta Metallurgica, 21, 1051-1063. https://doi.org/10.1016/0001-6160(73)90021-7
[51] Larch, F. and Cahn, J.W. (1978) A Nonlinear Theory of Thermochemical Equilibrium of Solids under Stress. Acta Metallurgica, 26, 53-60. https://doi.org/10.1016/0001-6160(78)90201-8
[52] Larche, F.C. and Cahn, J.W. (1978) Thermochemical Equilibrium of Multiphase Solids under Stress. Acta Metallurgica, 26, 1579-1589. https://doi.org/10.1016/0001-6160(78)90067-6
[53] Larche, F.C. and Cahn, J.W. (1982) The Effect of Self-Stress on Diffusion in Solids. Acta Metallurgica, 30, 1835- 1845. https://doi.org/10.1016/0001-6160(82)90023-2
[54] 杨小斌, 涂善东. 碳扩散和扩散应力的相互影响分析[J]. 固体力学学报, 2013(S1): 74-78.
[55] Gao, H., Zhang, L., Nix, W.D., Thompson, C.V. and Arzt, E. (1999) Crack-Like Grain-Boundary Diffusion Wedges in Thin Metal Films. Acta Materialia, 47, 2865-2878. http://dx.doi.org/10.1016/S1359-6454(99)00178-0
[56] Zhang, L. (2000) A Class of Strongly Coupled Elasticity and Diffusion Problems in Thin Metal Films. Stanford University, Stanford.
[57] Chateau, J.P., Delafosse, D. and Magnin, T. (2002) Numerical Simulations of Hydrogen-Dislocation Interactions in Fcc Stainless Steels, Part II: Hydrogen Effects on Crack Tip Plasticity at a Stress Corrosion Crack. Acta Materialia, 50, 1523-1538. https://doi.org/10.1016/S1359-6454(02)00009-5
[58] Klinger, L. and Rabkin, E. (2011) Theory of the Kirkendall Effect during Grain Boundary Interdiffusion. Acta Materialia, 59, 1389-1399. https://doi.org/10.1016/j.actamat.2010.10.070
[59] Chen, Y.C., Zhang, Y.G. and Chen, C.Q. (2004) General Theory of Interdiffusion Growth in Diffusion Couples. Materials Science and Engineering A, 368, 1-9. https://doi.org/10.1016/S0921-5093(03)00480-5
[60] 陈永翀. 扩散蠕变理论的基础问题研究[J]. 稀有金属, 2012, 36(2): 171.
[61] 陈永翀, 其鲁, 张永刚, 等. 固体互扩散生长的唯象理论[J]. 北京大学学报(自然科学版), 2006, 42(2): 168-174.
[62] 陈永翀, 其鲁, 张永刚, 等. 固态反应周期层片型结构分析[J]. 金属学报, 2005, 41(3): 235-241.
[63] Chen, Y., Zhang, Y. and Chen, C. (2003) Quantitative Descriptions of Periodic Layer Formation during Solid State Reactions. Materials Science and Engineering A, 362, 135-144. https://doi.org/10.1016/S0921-5093(03)00479-9
[64] Chakraborty, J. (2005) Diffusion in Stressed Thin Films. Uni-versitat Stuttgart, Stuttgart.
[65] Galdikas, A. and Moskalioviene, T. (2010) Stress Induced Nitrogen Diffusion during Nitriding of Austenitic Stainless Steel. Computational Materials Science, 50, 796-799. https://doi.org/10.1016/j.commatsci.2010.10.018
[66] Galdikas, A. and Moskalioviene, T. (2011) Modeling of Stress Induced Nitrogen Diffusion in Nitrided Stainless Steel. Surface and Coatings Technology, 205, 3742-3746. https://doi.org/10.1016/j.surfcoat.2011.01.040
[67] Moskalioviene, T. and Galdikas, A. (2012) Stress Induced and Concentration Dependent Diffusion of Nitrogen in Plasma Nitrided Austenitic Stainlesssteel. Vacuum, 86, 1552-1557. https://doi.org/10.1016/j.vacuum.2012.03.026
[68] Onsager, L. (1945) Theories and Problems of Liquid Diffusion. Annals of the New York Academy of Sciences, 46, 241- 265. https://doi.org/10.1111/j.1749-6632.1945.tb36170.x
[69] Christiansen, T. and Somers, M.A.J. (2006) Avoiding Ghost Stress on Reconstruction of Stress-and Composition- Depth Profiles from Destructive X-Ray Diffraction Depth Profiling. Materials Science and Engineering A, 424, 181- 189. https://doi.org/10.1016/j.msea.2006.03.007
[70] Hoeft, D., Latella, B.A. and Short, K.T. (2005) Residual Stress and Cracking in Expanded Austenite Layers. Journal of Physics: Condensed Matter, 17, 3547-3558. https://doi.org/10.1088/0953-8984/17/23/007
[71] Christiansen, T.L. and Somers, M.A.J. (2009) Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel. Metallurgical and Materials Transactions A, 40, 1791-1798. https://doi.org/10.1007/s11661-008-9717-9
[72] 关振铎, 等编著. 无机材料物理性能[M]. 北京: 清华大学出版社, 1992.
[73] Larche, F. and Cahn, J. (1985) The Interaction of Composition and Stress in Crystalline Solids. Acta Met-allurgica, 33, 331-357. https://doi.org/10.1016/0001-6160(85)90077-X
[74] Klinger, L. and Rabkin, E. (2011) Grain Boundary Interdiffusion and Stresses in Thin Polycrystalline Films. Journal of Materials Science, 46, 4343-4348. https://doi.org/10.1007/s10853-010-5237-2