Au纳米棒对Na3PO4:Sm3+/Er3+/Yb3+薄膜发光的增强
Enhancement of Na3PO4:Sm3+/Er3+/Yb3+ Film Luminescence by Au Nanorods
DOI: 10.12677/NAT.2016.64007, PDF, HTML, XML,  被引量 下载: 1,790  浏览: 4,950  国家自然科学基金支持
作者: 唐 毅, 刘艳玲*, 魏 冬, 吴边鹏:天津城建大学理学院,天津
关键词: 溶胶–凝胶法Au纳米棒Sm3+/Er3+/Yb3+发光薄膜Sol-Gol Method Au-Nanorods Sm3+/Er3+/Yb3+ Luminous Film
摘要: 本文用溶胶–凝胶法制备了Na3PO4:Sm3+/Er3+/Yb3+发光薄膜,并通过Au纳米棒的局域表面等离子体共振效应(Localized Surface Plasmon Resonance, LSPR)实现了发光薄膜的发光增强。本文采用扫描电子显微镜(Scanning Electron Microscope, SEM)、UV-3600型紫外–可见–近红外分光光度计、FSL920型组合紫外–可见–中红外稳态时间分辨荧光光谱仪(Photoluminescence,PL)等测试手段对薄膜进行了分析表征。结果表明:Na3PO4:Sm3+/Er3+/Yb3+发光薄膜表面均一;薄膜发出600~615 nm范围的橙红光,随着激发波长的增加,薄膜的发射光谱中心存在明显的红移,最大红移范围50 nm,同时其发光强度降低。在370 nm激发光的激发下,薄膜的荧光发射强度最大;利用Au纳米棒的LSPR效应,实现了发光薄膜的发光增强,最大增强因子为2.5。
Abstract: Selecting the sol-gol method, we obtained the Na3PO4:Sm3+/Er3+/Yb3+ luminous films and achieved its luminescence enhancement with Localized Surface Plasmon Resonance (LSPR) of Au-nanorods. The films were analyzed characterized by using scanning electron microscope (SEM), UV-3600 UV-Vis-near infrared spectrophotometer, FSL920 combination of UV-Vis-in infrared steady time- resoled photofluorescence spectrometer (PL) and other means of testing. The results show that the uniform surface of Na3PO4:Sm3+/Er3+/Yb3+ luminous films is slippy. Films can emit orange light whose range is between 600 - 615 nm. With the increase of the excitation wavelength, the films’ emission spectrum center has obvious red shift about 50 nm and intensity decrease. When the excitation wavelength is equal to 370 nm, the fluorescence emission of the film is the strongest. Via the LSPR of the Au-nanorods, the luminescence enhancement of the luminescent thin films is realized. The enhancement factor increases to 2.5 times.
文章引用:唐毅, 刘艳玲, 魏冬, 吴边鹏. Au纳米棒对Na3PO4:Sm3+/Er3+/Yb3+薄膜发光的增强[J]. 纳米技术, 2016, 6(4): 53-59. http://dx.doi.org/10.12677/NAT.2016.64007

参考文献

[1] Xu, J., Ju, Z.H., Gao, X.P., An, Y.Q., Tang, X.L. and Liu, W.L. (2013) A Novel Host Lattice for Sm3+-Doped Long Persistent Phosphorescence Materials Emitting Reddish Orange Light. Inorganic Chemistry, 52, 13875-13881.
https://doi.org/10.1021/ic401262w
[2] Erdogmus, E., Pekgozlu, I. and Korkmaz, E. (2014) X-Ray Diffraction and Fluorescence Spectroscopy Analysis of Sm3+ in Lithium Calcium Silicate. Spectroscopy, 29, 58-61.
[3] Mazurak, Z., Bodył, S., Lisiecki, R., Gabrys-Pisarska, J. and Czaja, M. (2010) Optical Properties of Pr3+, Sm3+, and Er3+ doped P2O5-CaO-SrO-BaO Phosphate Glass. Optical Materials, 32, 547-553.
https://doi.org/10.1016/j.optmat.2009.11.011
[4] Yan, S.A., Wang, J.W., Chang, Y.S., Hwang, W.S. and Chang, Y.H. (2011) Synthesis and Luminescence Properties of Ln3+(Ln3+ = Er3+, Sm3+) Doped Barium Lanthanum Tungstate BaLa2WO7 Phosphors. Optical Materials, 34, 147-157.
https://doi.org/10.1016/j.optmat.2011.07.028
[5] Gao, Z.Y., Wang, Z.Y., Fu, L.L., Yang, X.X., Fu, Z.L. and Wu, Z.J. (2015) NaLa(MoO4)2: RE3+ (RE3+ = Eu3+, Sm3+, Er3+/Yb3+) Microspheres: The Synthesis and Optical Properties. Materials Research Bulletin, 70, 779-783.
https://doi.org/10.1016/j.materresbull.2015.06.002
[6] Gordo, V.O., Arslanli, Y.T., Canimoglu, A., Ayvacikli, M., Gobato, Y.G., Henini, M. and Can, N. (2015) Visible to Infrared Low Temperature Luminescence of Er3+, Nd3+ and Sm3+ in CaSnO3 Phosphors. Applied Radiation and Isotopes, 99, 69-76.
https://doi.org/10.1016/j.apradiso.2015.02.019
[7] Fukushima, M., Managaki, N., Fujii, M., Yanagi, H. and Hayashi, S. (2005) Enhancement of 1.54-μm Emission from Er-Doped Sol-Gel SiO2 Films by Au Nanoparticles Doping. Journal of Applied Physics, 98, 024316.
[8] Paudel, H.P., Zhong, L., Bayat, K., Baroughi, M.F., Smith, S., Lin, C.K., Jiang, C.Y., Berry, M.T. and May, P.S. (2011) Enhancement of Near-Infrared-to-Visible Upconversion Luminescence Using Engineered Plasmonic Gold Surfance. Journal of Physical Chemistry C, 115, 19028-19036.
[9] Zhang, H., Xu, D., Huang, Y. and Duan, X. (2011) Highly Spectral Dependent Enhancement of Upconversion Emission with Sputtered Gold Island Films. Chemical Communications. Chemical Communications, 47, 979-981.
https://doi.org/10.1039/C0CC03566A
[10] Kaur, G., Verma, R.K., Rai, D. K. and Rai, S.B. (2012) Plasmon-Enhanced Luminescence of Sm Complex Using Silver Nanoparticles in Polyvinyl Alcohol. Journal of Luminescence, 132, 1683-1687.
https://doi.org/10.1016/j.jlumin.2012.02.014
[11] Liu, Q.K., Yuan, Y. and Smalyukh, I.I. (2014) Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles. Nano Letters, 14, 4071-4077.
https://doi.org/10.1021/nl501581y
[12] Zhang, J., Song, F., Lin, S.X., Liu, S.J. and Liu, Y.L. (2016) Tunable Fluorescence Lifetime of Eu-PMMA Films with Plasmonic Nanostructures for Multiplexing. Optics Express, 24, 8228-8236.
https://doi.org/10.1364/OE.24.008228
[13] Kim, W.J., Nyk, M. and Prasad, P.N. (2009) Color-Coded Multilayer Photopatterned Microstructers Using Lanthanide(III) Ion Co-Doped NaYF4 Nanoparticle with Upconversion Luminescence for Possible Applications in Security. Nano- technology, 20, 185301.
https://doi.org/10.1088/0957-4484/20/18/185301
[14] Zheng, C.B., Xia, Y.Q., Qin, F., Yu, Y., Miao, J.P., Zhang, Z.G. and Cao, W.W. (2010) Femtosecond Pulsed Laser Induced Synthesis of Ultrafine Y2O3: Pr3+, Yb3+ Nanoparticles with Improved Upconversion Efficiency. Chemical Physics Letters, 496, 316-320.
https://doi.org/10.1016/j.cplett.2010.07.067
[15] Xian, J.Q., Yi, S.P., Deng, Y.M., Zhang, L., Hu, X.X. and Wang, Y.H. (2016) Synthesis and Photoluminescence Properties of Ln3+(Ln3+ = Tb3+,Dy3+,Sm3+,Er3+)-Doped Ca2Nb2O7 Phosphors. Physica B: Condensed Matter, 483, 19-25.
https://doi.org/10.1016/j.physb.2015.12.022