土壤有机污染物的吸附–生物降解耦合模型研究进展
Advances in Coupled Sorption Biodegradation Models for Organic Pollutants in Soil
DOI: 10.12677/AMB.2016.54005, PDF, HTML, XML, 下载: 2,224  浏览: 5,327  国家自然科学基金支持
作者: 胡 姣, 郁 祁, 盛光遥*:同济大学环境科学与工程学院,污染控制与资源利用国家重点实验室,上海
关键词: 土壤有机污染物模型微生物可利用性吸附Soil Organic Pollutants Model Bioavailability Sorption
摘要: 污染物的微生物可利用性是控制其环境归趋的主要因素之一,也是决定受污染土壤的微生物修复技术成败的关键。有机污染物进入土壤后发生吸附作用,进而影响其生物可利用性。正确预测有机污染物在土壤环境中的微生物可利用性,需要建立可靠的吸附–降解动力学模型。本文介绍了五种国内外常用的有关农药和多环芳烃在土壤/沉积物上的吸附–降解耦合模型,综述了模型建立过程、评价方法、适用范围,探讨了现有模型在实际应用中的共性问题,以期为土壤污染的控制和修复提供思路。
Abstract: Bioavailability of pollutants in soil is one of the main factors that determine their environmental fate. It is a key to the successful implementation of bioremediation of polluted soil. Sorption of organic pollutants occurs once they enter soil, and subsequently influence the bioavailability of the pollutants. To accurately predict the bioavailability of organic pollutants in soil, coupled sorption-biodegradation models need to be established. This paper introduces five coupled sorption-biodegradation models used in the literature to account for the bioavailability of pesticides and polycyclic aromatic hydrocarbons in soil and sediment as influenced by sorption. The overall objective of this paper is to offer proper ideas for soil pollution control and remediation. This is achieved by summarizing the establishment of these models, their evaluations and applications, and by discussing potential problems associated with these models.
文章引用:胡姣, 郁祁, 盛光遥. 土壤有机污染物的吸附–生物降解耦合模型研究进展[J]. 微生物前沿, 2016, 5(4): 37-54. http://dx.doi.org/10.12677/AMB.2016.54005

参考文献

[1] Song, Q., Wang, Z. and Li, J. (2013) Sustainability Evaluation of E-Waste Treatment Based on Emergy Analysis and the LCA Method: A Case Study of a Trial Project in Macau. Ecological Indicators, 30, 138-147.
https://doi.org/10.1016/j.ecolind.2013.02.016
[2] 邹威, 罗义, 周启星. 畜禽粪便中抗生素抗性基因(ARGs)污染问题及环境调控[J]. 农业环境科学学报, 2014, 33(12): 2281-2287.
[3] Mitton, F.M., Gonzalez, M., Pena, A.v Miglioranza, K.S. (2012) Effects of Amendments on Soil Availability and Phytoremediation Potential of Aged p,p’-DDT, p,p’-DDE and p,p’-DDD Residues by Willow Plants (Salix sp.). Journal of Hazardous Materials, 203-204, 62-68.
https://doi.org/10.1016/j.jhazmat.2011.11.080
[4] Jayanthy, V., Geetha, R., Rajendran, R., Prabhavathi, P., Karthik Sundaram, S., Dinesh Kumar, S. and Santhanam, P. (2014) Phytoremediation of Dye Contaminated Soil by Leucaena leucocephala (Subabul) Seed and Growth Assessment of Vigna radiata in the Remediated Soil. Saudi Journal of Biological Sciences, 21, 324-333.
https://doi.org/10.1016/j.sjbs.2013.12.001
[5] 杨勇, 何艳明, 栾景丽, 刘景洋, 郭玉文. 国际污染场地土壤修复技术综合分析[J]. 环境科学与技术, 2012, 35(10): 92-98.
[6] 周际海, 袁颖红, 朱志保, 姚春阳, 张谷雨, 高琪. 土壤有机污染物生物修复技术研究进展[J]. 生态环境学报, 2015, 24(2): 343-351.
[7] Head, I.M. (1998) Bioremediation: Towards a Credible Technology. Microbiology, 144, 599-608.
https://doi.org/10.1099/00221287-144-3-599
[8] Haws, N.W., Ball, W.P. and Bouwer, E.J. (2006) Modeling and Interpreting Bioavailability of Organic Contaminant Mixtures in Subsurface Environments. Journal of Contaminant Hydrology, 82, 255-292.
https://doi.org/10.1016/j.jconhyd.2005.10.005
[9] 李克斌, 许中坚, 刘维屏农药在土壤上吸着/解吸及其对生物利用率影响的研究进展[J]. 环境污染治理技术与设备, 2002, 3(4): 18-24.
[10] Ogram, A.V., Jessup, R.E., Ou, L.T. and Rao, P.S. (1985) Effects of Sorption on Biological Degradation Rates of (2,4-Dichlorophenoxy) Acetic Acid in Soils. Applied and Environmental Microbiology, 49, 582-587.
[11] Calvillo, Y.M. and Alexander, M. (1996) Mechanism of Microbial Utilization of Biphenyl Sorbed to Polyacrylic Beads. Applied Microbiology and Biotechnology, 45, 383-390.
https://doi.org/10.1007/s002530050700
[12] Tang, W.C., White, J.C. and Alexander, M. (1998) Utilization of Sorbed Compounds by Microorganisms Specifically Isolated for That Purpose. Applied Microbiology and Biotechnology, 49, 117-121.
https://doi.org/10.1007/s002530051147
[13] Laor, Y., Strom, P.F. and Farmer, W.J. (1999) Bioavailability of Phenanthrene Sorbed to Mineral-Associated Humic Acid. Water Research, 33, 1719-1729.
https://doi.org/10.1016/S0043-1354(98)00378-9
[14] Huesemann, M.H., Hausmann, T.S. and Fortman, T.J. (2004) Does Bioavailability Limit Biodegradation? A Comparison of Hydrocarbon Biodegradation and Desorption Rates in Aged Soils. Biodegradation, 15, 261-274.
https://doi.org/10.1023/B:BIOD.0000042996.03551.f4
[15] Poeton, T.S., Stensel, H.D. and Strand, S.E. (1999) Biodegradation of Polyaromatic Hydrocarbons by Marine Bacteria: Effect of Solid Phase on Degradation Kinetics. Water Research, 33, 868-880.
https://doi.org/10.1016/S0043-1354(98)00232-2
[16] Yang, Y., Hunter, W., Tao, S. and Gan, J. (2009) Microbial Availability of Different Forms of Phenanthrene in Soils. Environmental Science and Technology, 43, 1852-1857.
https://doi.org/10.1021/es802966z
[17] Smith, K.E.C., Thullner, M., Wick, L.Y. and Harms, H. (2009) Sorption to Humic Acids Enhances Polycyclic Aromatic Hydrocarbon Biodegradation. Environmental Science and Technology, 43, 7205-7211.
https://doi.org/10.1021/es803661s
[18] Xia, X., Li, Y., Zhou, Z. and Feng, C. (2010) Bioavailability of Adsorbed Phenanthrene by Black Carbon and Multi- Walled Carbon Nanotubes to Agrobacterium. Chemosphere, 78, 1329-1336.
https://doi.org/10.1016/j.chemosphere.2010.01.007
[19] Zhang, C., Li, M., Xu, X. and Na, L. (2015) Effects of Carbon Nanotubes on Atrazine Biodegradation by Arthrobacter sp. Journal of Hazardous Materials, 287, 1-6.
https://doi.org/10.1016/j.jhazmat.2015.01.039
[20] Feng, Y., Park, J.H., Voice, T.C. and Boyd, S.A. (2000) Bioavailability of Soil-Sorbed Biphenyl to Bacteria. Environmental Science and Technology, 34, 1977-1984.
https://doi.org/10.1021/es991165e
[21] Park, J.H., Feng, Y., Ji, P., Voice, T.C. and Boyd, S.A. (2003) Assessment of Bioavailability of Soil-Sorbed Atrazine. Applied and Environmental Microbiology, 69, 3288-3298.
https://doi.org/10.1128/AEM.69.6.3288-3298.2003
[22] Alekseeva, T., Prevot, V., Sancelme, M., Forano, C. and Besse-Hoggan, P. (2011) Enhancing Atrazine Biodegradation by Pseudomonas sp. Strain ADP Adsorption to Layered Double Hydroxide Bionanocomposites. Journal of Hazardous Materials, 191, 126-135.
https://doi.org/10.1016/j.jhazmat.2011.04.050
[23] Guerin, W.F. and Boyd, S.A. (1992) Differential Bioavailability of Soil-Sorbed Naphthalene to Two Bacterial Species. Applied and Environmental Microbiology, 58, 1142-1152.
[24] Simkins, S. and Alexander, M. (1984) Models for Mineralization Kinetics with the Variables of Substrate Concentration and Population Density. Applied and Environmental Microbiology, 47, 1299-1306.
[25] Scow, K.M., Schmidt, S.K. and Alexander, M. (1989) Kinetics of Biodegradation of Mixtures of Substrates in Soil. Soil Biology and Biochemistry, 21, 703-708.
https://doi.org/10.1016/0038-0717(89)90067-9
[26] Guerin, W.F. and Boyd, S.A. (1997) Bioavailability of Naphthalene Associated with Natural and Synthetic Sorbents. Water Research, 31, 1504-1512.
https://doi.org/10.1016/S0043-1354(96)00402-2
[27] Williams, J.W. and Morrison, J.F. (1979) The Kinetics of Reversible Tight-Binding Inhibition. Methods in Enzymology, 63, 437-467.
https://doi.org/10.1016/0076-6879(79)63019-7
[28] Tagaya, M., Yamano, K. and Fukui, T. (1989) Kinetic Studies of the Pyridoxal Kinase from Pig Liver: Slow-Binding Inhibition by Adenosine Tetraphosphopyridoxal. Biochemistry, 28, 4670-4675.
https://doi.org/10.1021/bi00437a024
[29] Leatherbarrow, R.J. (1990) Using Linear and Non-Linear Regression to Fit Biochemical Data. Trends in Biochemical Sciences, 15, 455-458.
https://doi.org/10.1016/0968-0004(90)90295-M
[30] Mohammed, L. and Julio, O.C.J. (1999) Bioavailability of Labile and Desorption-Resistant Phenanthrene Sorbed to Montmorillonite Clay Containing Humic Fractions. Environmental Toxicology and Chemistry, 18, 2729-2735.
https://doi.org/10.1002/etc.5620181212
[31] Cui, X., Hunter, W., Yang, Y., Chen, Y. and Gan, J. (2011) Biodegradation of Pyrene in Sand, Silt and Clay Fractions of Sediment. Biodegradation, 22, 297-307.
https://doi.org/10.1007/s10532-010-9399-z
[32] Lee, S., Pardue, J.H., Moe, W.M. and Kim, D.J. (2009) Effect of Sorption and Desorption-Resistance on Biodegradation of Chlorobenzene in Two Wetland Soils. Journal of Hazardous Materials, 161, 492-498.
https://doi.org/10.1016/j.jhazmat.2008.03.129
[33] Chiou, C.T. (2002) Partition and Adsorption of Organic Contaminants in Environmental Systems. John Wiley & Sons, Hoboken, 106-213.
https://doi.org/10.1002/0471264326
[34] Zhang, W.X., Bouwer, E.J. and Ball, W.P. (1998) Bioavailability of Hydrophobic Organic Contaminants: Effects and Implications of Sorp-tion-Related Mass Transfer on Bioremediation. Groundwater Monitoring and Remediation, 18, 126-138.
https://doi.org/10.1111/j.1745-6592.1998.tb00609.x
[35] 张静, 庞然, 段林, 张承东. 土壤吸附态阿特拉津的生物可利用性研究[J]. 环境污染与防治, 2013, 35(10): 12-16.
[36] Park, J.H., Zhao, X. and Voice, T.C. (2001) Biodegradation of Non-Desorbable Naphthalene in Soils. Environmental Science and Technology, 35, 2734-2740.
https://doi.org/10.1021/es0019326
[37] Park, J.H., Zhao, X. and Voice, T.C. (2002) Development of a Kinetic Basis for Bioavailability of Sorbed Naphthalene in Soil Slurries. Water Research, 36, 1620-1628.
https://doi.org/10.1016/S0043-1354(01)00360-8
[38] Park, J.H., Sharer, M., Feng, Y., Chung, S.Y., Voice, T.C. and Boyd, S.A. (2005) Effects of Aging on the Bioavailability and Sorption/Desorption Behavior of Biphenyl in Soils. Water Science and Technology, 52, 95-105.
[39] Sharer, M., Park, J.H., Voice, T.C. and Boyd, S.A. (2003) Time Dependence of Chlorobenzene Sorption/Desorption by Soils. Soil Science Society of America Journal, 67, 1740-1745.
https://doi.org/10.2136/sssaj2003.1740
[40] Sharer, M., Park, J.H., Voice, T.C. and Boyd, S.A. (2003) Aging Effects on the Sorption-Desorption Characteristics of Anthropogenic Organic Compounds in Soil. Journal of Environmental Quality, 32, 1385-1392.
https://doi.org/10.2134/jeq2003.1385
[41] Park, J.H., Feng, Y., Cho, S.Y., Voice, T.C. and Boyd, S.A. (2004) Sorbed Atrazine Shifts into Non-Desorbable Sites of Soil Organic Matter during Aging. Water Research, 38, 3881-3892.
https://doi.org/10.1016/j.watres.2004.06.026
[42] 黄杰勋, 周冰冰, 李非里, 盛光遥. 老化对黑碳中吸附态苯酚的脱附及微生物降解的影响[J]. 环境科学学报, 2014, 34(10):2469-2476.
[43] Carroll, K.M., Harkness, M.R., Bracco, A.A. and Balcarcel, R.R. (1994) Application of a Permeantpolymer Diffusional Model to the Desorption of Polychlorinated Biphenyls from Hudson River Sediments. Environmental Science and Technology, 28, 253-258.
https://doi.org/10.1021/es00051a011
[44] Pignatello, J.J. and Xing, B. (1996) Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environmental Science and Technology, 30, 1-11.
https://doi.org/10.1021/es940683g
[45] Weber, W.J. and Huang, W. (1996) A Distributed Reactivity Model for Sorption by Soils and Sediments. 4. Intraparticle Heterogeneity and Phase Distribution Relationships under Nonequilibrium Conditions. Environmental Science and Technology, 30, 881-888.
https://doi.org/10.1021/es950329y
[46] Kan, A.T., Fu, G., Hunter, M., Chen, W., Ward, C.H. and Tomson, M.B. (1998) Irreversible Sorption of Neutral Hydrocarbons to Sediments: Experimental Observations and Model Predictions. Environmental Science and Technology, 32, 892-902.
https://doi.org/10.1021/es9705809
[47] Kan, A.T., Fu, G., Hunter, M.A. and Tomson, M.B. (1997) Irreversible Adsorption of Naphthalene and Tetrachlorobiphenyl to Lula and Surrogate Sediments. Environmental Science and Technology, 31, 2176-2185.
https://doi.org/10.1021/es9601954
[48] Alexander, M. (2000) Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environmental Science and Technology, 34, 4259-4265.
https://doi.org/10.1021/es001069+
[49] Chen, W., Kan, A.T., Newell, C.J., Moore, E. and Tomson, M.B. (2002) More realistic Soil Cleanup Standards with Dual-Equilibrium Desorption. Ground Water, 40, 153-164.
https://doi.org/10.1111/j.1745-6584.2002.tb02500.x
[50] Beckles, D.M., Wei, C. and Hughes, J.B. (2007) Bioavailability of Polycyclic Aromatic Hydrocarbons Sequestered in Sediment: Microbial Study and Model Prediction. Environmental Toxicology and Chemistry, 26, 878-883.
https://doi.org/10.1897/06-410R.1
[51] Chen, W. (1999) Impact of Irreversible Sorption on Sediment Quality. PhD Thesis, Rice University, Houston.
[52] Chen, W., Kan, A.T. and Tomson, M.B. (2000) Impact of Irreversible Sorption on Bioavailability, Risk Assessment, and Site Remediation. Proceedings of the Water Environment Federation, Anaheim, 14-18 October 2000, 598-615.
https://doi.org/10.2175/193864700784608423
[53] 段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应[J]. 环境化学, 2011, 30(1): 242- 251.
[54] Sheng, G., Johnston, C.T., Teppen, B.J. and Boyd, S.A. (2001) Potential Contributions of Smectite Clays and Organic Matter to Pesticide Retention in Soils. Journal of Agricultural and Food Chemistry, 49, 2899-2907.
https://doi.org/10.1021/jf001485d
[55] Boyd, S.A., Sheng, G., Teppen, B.J. and Johnston, C.T. (2001) Mechanisms for the Adsorption of Substituted Nitrobenzenes by Smectite Clays. Environmental Science and Technology, 35, 4227-4234.
https://doi.org/10.1021/es010663w
[56] Yang, Y. and Sheng, G. (2003) Enhanced Pesticide Sorption by Soils Containing Particulate Matter from Crop Residue Burns. Environmental Science and Technology, 37, 3635-3639.
https://doi.org/10.1021/es034006a
[57] Chun, Y., Sheng, G., Chiou, C.T. and Xing, B. (2004) Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental Science and Technology, 38, 4649-4655.
https://doi.org/10.1021/es035034w
[58] Cornelissen, G., Noort, P.C.M.V., Parsons, J.R. and Govers, H.A.J. (1997) Temperature Dependence of Slow Adsorption and Desorption Kinetics of Organic Compounds in Sediments. Environmental Science and Technology, 31, 454- 460.
https://doi.org/10.1021/es960300+
[59] Connaughton, D.F., Stedinger, J.R., Lion, L.W. and Shuler, M.L. (1993) Description of Time-Varying Desorption Kinetics: Release of Naphthalene from Contaminated Soils. Environmental Science and Technology, 27, 2397-2403.
https://doi.org/10.1021/es00048a013
[60] Schrap, S.M., Sleijpen, G.L., Seinen, W. and Opperhuizen, A. (1994) Sorption Kinetics of Chlorinated Hydrophobic Organic Chemicals, Part II: Desorption Experiments. Environmental Science and Pollution Research, 1, 81-92.
https://doi.org/10.1007/BF02986511
[61] Langenfeld, J.J., Hawthorne, S.B., Miller, D.J. and Pawliszyn, J. (1995) Kinetic Study of Supercritical Fluid Extraction of Organic Contaminants from Heterogeneous Environmental Samples with Carbon Dioxide and Elevated Temperatures. Analytical Chemistry, 67, 1727-1736.
https://doi.org/10.1021/ac00106a013
[62] Gerard, C., Van, N.P.C.M. and Govers, H.A.J. (1997) Desorption Kinetics of Chlorobenzenes, Polycyclic Aromatic Hydrocarbons, and Polychlorinated Biphenyls: Sediment Extraction with Tenax and Effects of Contact Time and Solute Hydrophobicity. Environmental Toxicology and Chemistry, 16, 1351-1357.
https://doi.org/10.1002/etc.5620160703
[63] Cornelissen, G., Rigterink, H., Ferdinandy, M.M.A. and Noort, P.C.M.V. (1998) Rapidly Desorbing Fractions of Pahs in Contaminated Sediments as a Predictor of the Extent of Bioremediation. Environmental Science and Technology, 32, 966-970.
https://doi.org/10.1021/es9704038
[64] Scheibenbogen, K., Zytner, R.G., Lee, H. and Trevors, J.T. (1994) Enhanced Removal of Selected Hyrocarbons from Soil by Pseudomonas aeruginosa UG2 Biosurfactants and Some Chemical Surfactants. Journal of Chemical Technology and Biotechnology, 59, 53-59.
https://doi.org/10.1002/jctb.280590109
[65] Leglize, P., Alain, S., Jacques, B. and Corinne, L. (2008) Adsorption of Phenanthrene on Activated Carbon Increases Mineralization Rate by Specific Bacteria. Journal of Hazardous Materials, 151, 339-347.
https://doi.org/10.1016/j.jhazmat.2007.05.089
[66] Oberbremer, A., Muller-Hurtig, R. and Wagner, F. (1990) Effect of the Addition of Microbial Surfactants on Hydrocarbon Degradation in a Soil Population in a Stirred Reactor. Applied Microbiology and Biotechnology, 32, 485-489.
https://doi.org/10.1007/BF00903788
[67] Uyttebroek, M., Ortega-Calvo, J.J., Breugelmans, P. and Springael, D. (2006) Comparison of Mineralization of Solid- Sorbed Phenanthrene by Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Mycobacterium spp. and Sphingomonas spp. Applied Microbiology and Biotechnology, 72, 829-836.
https://doi.org/10.1007/s00253-006-0337-2
[68] Zhang, Y., Wang, F., Bian, Y., Kengara, F.O., Gu, C., Zhao, Q. and Jiang, X. (2012) Enhanced Desorption of Humin- Bound Phenanthrene by Attached Phenanthrene-Degrading Bacteria. Bioresource Technology, 123, 92-97.
https://doi.org/10.1016/j.biortech.2012.07.093
[69] Chiou, C.T., Peters, L.J. and Freed, V.H. (1979) A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds. Science, 206, 831-832.
https://doi.org/10.1126/science.206.4420.831
[70] Johnston, C.T., de Oliveira, M.F., Teppen, B.J., Sheng, G. and Boyd, S.A. (2001) Spectroscopic Study of Nitroaromatic-Smectite Sorption Mechanisms. Environmental Science and Technology, 35, 4767-4772.
https://doi.org/10.1021/es010909x
[71] Zhou, Z., Shi, D., Qiu, Y. and Sheng, G.D. (2010) Sorptive Domains of Pine Chars as Probed by Benzene and Nitrobenzene. Environmental Pollution, 158, 201-206.
https://doi.org/10.1016/j.envpol.2009.07.020
[72] Yang, Y. and Sheng, G. (2003) Pesticide Adsorptivity of Aged Particulate Matter Arising from Crop Residue Burns. Journal of Agricultural and Food Chemistry, 51, 5047-5051.
https://doi.org/10.1021/jf0345301
[73] Loganathan, V.A., Feng, Y., Sheng, G.D. and Clement, T.P. (2009) Crop-Residue-Derived Char Influences Sorption, Desorption and Bioavailability of Atrazine in Soils. Soil Science Society of America Journal, 73, 967-974.
https://doi.org/10.2136/sssaj2008.0208
[74] Qiu, Y., Xiao, X., Cheng, H., Zhou, Z. and Sheng, G.D. (2009) Influence of Environmental Factors on Pesticide Adsorption by Black Carbon: pH and Model Dissolved Organic Matter. Environmental Science and Technology, 43, 4973-4978.
https://doi.org/10.1021/es900573d
[75] Tong, F., Gu, X., Gu, C., Ji, R., Tan, Y. and Xie, J. (2015) Insights into Tetrabromobisphenol A adsorption onto Soils: Effects of Soil Components and Environmental Factors. The Science of the Total Environment, 536, 582-588.
https://doi.org/10.1016/j.scitotenv.2015.07.063
[76] Chang, P.H., Li, Z., Jiang, W.T., Kuo, C.Y. and Jean, J.S. (2014) Adsorption of Tetracycline on Montmorillonite: Influence of Solution pH, Temperature, and Ionic Strength. Desalination and Water Treatment, 55, 1380-1392.
https://doi.org/10.1080/19443994.2014.924881
[77] Ngigi, A., Dorfler, U., Scherb, H., Getenga, Z., Boga, H. and Schroll, R. (2011) Effect of Fluctuating Soil Humidity on in Situ Bioavailability and Degradation of Atrazine. Chemosphere, 84, 369-375.
https://doi.org/10.1016/j.chemosphere.2011.03.068