四足机器人基于功率最优原则的足端轨迹规划
Trajectory Planning of Quadruped Robot Based on the Principle of Optimal Power
DOI: 10.12677/IJM.2016.54013, PDF, HTML, XML,  被引量 下载: 2,032  浏览: 5,361  国家科技经费支持
作者: 袁立鹏:常州恐龙园股份有限公司,江苏 常州;哈尔滨工业大学机电工程学院,黑龙江 哈尔滨;张志宇:哈尔滨工业大学机电工程学院,黑龙江 哈尔滨;欧阳荣坚:常州迪华数字科技有限公司,江苏 常州
关键词: 四足机器人步态规划轨迹规划Quadruped Robot Gait Planning Trajectory Planning
摘要: 轨迹规划是四足机器人研究的关键,合理的足端轨迹有助于减少四足机器人足端触地时的冲击,本文根据零冲击原则规划了三条四足机器人的足端轨迹。对各条足端轨迹进行虚拟样机仿真分析,根据功率最优原则,针对不同的步态选择相应最优的足端轨迹,为类似问题的实现开辟了新思路和新途径。
Abstract: Trajectory planning is the key of the quadruped robot. Reasonable foot trajectory is helpful for reducing the impact during the feet of quadruped robot striking the ground. According to the principle of the zero impact, this paper plans three trajectories of the quadruped robot, and con-ducts the virtual prototype simulation of the three trajectories. According to the principle of the optimal power, it chooses the optimal trajectory for different gaits. This paper provides reference for solving this kind of problem and related problems.
文章引用:袁立鹏, 张志宇, 欧阳荣坚. 四足机器人基于功率最优原则的足端轨迹规划[J]. 力学研究, 2016, 5(4): 138-147. http://dx.doi.org/10.12677/IJM.2016.54013

参考文献

[1] Nichol, J.G. (2005) Design for Energy Loss and Energy Control in a Galloping artifIcial Quadruped. Stanford University, Palo Alto, 78-83.
[2] 庄明. 基于虚拟样机技术的液压驱动四足机器人步态规划与仿真[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2012: 59-64.
[3] Xu, T., Chen, Q.J., et al. (2012) Learning Gait of Quadruped Robot without Prior Knowledge of the Environment. Chinese Journal of Mechanical Engineering, 25, 1068-1074.
https://doi.org/10.3901/CJME.2012.05.1068
[4] Nichol, J.G. (2005) Design for Energy Loss and Energy Control in a Galloping Artificial Quadruped. Stanford University, Palo Alto.
[5] Witte, H., Hackert, R., Lilje, K.E., et al. (2001) Transfer of Biological Principles into the Construction of Quadruped Walking Machines. 2001 Proceedings of the Second International Workshop on Robot Motion and Control, IEEE, Bukowy Dworek, Poland, 18-20 October 2001, 245-249.
[6] Zhang, X., Zheng, H., Guan, X., et al. (2005) A Biological Inspired Quadruped Robot: Structure And Control. 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, Shatin, 5-9 July 2005, 387-392.