1.5 μm能见度激光雷达的波长修正模型比较
The Comparison of Wavelength Dependence Models for 1.5 μm Visibility Lidar
DOI: 10.12677/OE.2016.64020, PDF, HTML, XML, 下载: 1,876  浏览: 4,304 
作者: 任敬宇:清华大学附属中学,北京;尚 祥*, 上官明佳, 王 冲, 裘家伟, 夏海云:中国科学技术大学地球与空间科学学院,安徽 合肥
关键词: 能见度1.5 μm激光雷达波长修正模型Visibility 1.5 μm Lidar Wavelength Dependence Model
摘要: 大气能见度在大气污染监测和保障航空、航海及陆上交通安全等方面具有重要作用。1.5 μm能见度激光雷达具有人眼允许最大曝光功率大,易于实现眼安全,可实现小型化和模块化等优点,适用于人员密集的场所。大气能见度定义为当550 nm准直激光经大气衰减到出射功率的2%或5%时所传输的大气距离,因此当采用1.5 μm激光时,需要进行波长修正。本文总结了现有的几种波长修正模型,并对它们之间的差异进行了分析。为了比较各种模型,研制了1.5 μm能见度激光雷达,并在2014年10月份于安徽合肥进行了连续24小时的能见度观测。通过与前向散射能见度仪进行比较,确认Kim模型与合肥实际情况最为吻合,平均相对误差小于7.8%。
Abstract: Visibility has a great effect on air pollution monitoring and all kinds of traffic operations. 1.5 μm visibility lidar has many advantages, such as eye-safe, miniaturization and modularity. Therefore 1.5 μm visibility lidar is suitable for crowded places. Visibility is defined as the atmospheric dis-tance of transmission when 550 nm collimated laser’s output power attenuates to 2% or 5%. Thus, when using 1.5 μm visibility lidar, the wavelength correction must be done. Several models have been summarized in this work, and the differences of these models have been analyzed. To have a comparison of these models, a 1.5 μm visibility lidar has been constructed. And a 24-hour continuous visibility observation is carried out in Hefei, Anhui Province in October, 2014. By comparing the data of lidar with the forward visibility meter, the Kim model is confirmed as the most suitable model for visibility measurement in Hefei and the average relative error is less than 7.8%.
文章引用:任敬宇, 尚祥, 上官明佳, 王冲, 裘家伟, 夏海云. 1.5 μm能见度激光雷达的波长修正模型比较[J]. 光电子, 2016, 6(4): 139-148. http://dx.doi.org/10.12677/OE.2016.64020

参考文献

[1] Wu, D., Bi, X.Y., Deng, X.J., et al. (2007) Effect of Atmospheric Haze on the Deterioration of Visibility over the Pearl River Delta. Acta Meteorologica Sinica, 21, 215. (in Chinese)
[2] Xing, X.N., Cui, Y.M., Zhang, F.G., et al. (2010) Summary of Present Situation and Development Trend of Visibility Measurement Technology. Metrology & Measurement Technology, 5, 006. (in Chinese)
[3] Xia, H.Y., Shangguan, M.J., Dou, X.K., et al. (2016) Micro-Pulse Upconversion Doppler Lidar for Wind and Visibility Detection in the Atmospheric Boundary Layer. Optics Letters, 41, 5218-5221. https://doi.org/10.1364/OL.41.005218
[4] Cheng, X.W., Gong, S.S., Li, F.Q., et al. (2007) 24 h Continuous Observation of Sodium Layer over Wuhan by Lidar. Science in China Series G: Physics, Mechanics and Astronomy, 50, 287-293. (in Chinese) https://doi.org/10.1007/s11433-007-0032-z
[5] Wu, T.F., Liang, Z.G., Yan, J.H. (2012) Theoretical Study on Air Dispersion Compensation in the Distance Measurement of Femtosecond Pulsed Laser. Chinese Journal of Lasers, 39, 1208004. (in Chinese) https://doi.org/10.3788/CJL201239.1208004
[6] Lu, L.H., Liu, W.Q., Zhang, T.S., et al. (2014) A new Micro-Pulse Lidar for Atmospheric Horizontal Visibility Measurement. Chinese Journal of Lasers, 41, 0908005. (in Chinese) https://doi.org/10.3788/CJL201441.0908005
[7] Koschmieder, H. (1925) Theorie der horizontalensichtweite: Kontrast und sichtweite. Keim&Nemnich.
[8] Klett, J.D. (1981) Stable Analytical Inversion Solution for Processing Lidar Returns. Applied Optics, 20, 211-220. https://doi.org/10.1364/AO.20.000211
[9] Fernald, F.G. (1984) Analysis of Atmospheric Lidar Observations: Some Comments. Applied Optics, 23, 652-653. https://doi.org/10.1364/AO.23.000652
[10] Xie, C.B., Han, Y., Li, C., et al. (2005) Mobile Lidar for Visibility Measurement. High Power Laser Part Beams, 17, 971-975.
[11] Hua, D. and Song, X. (2008) Advances in Lidar Remote Sensing Techniques. Infrared and Laser Engineering, 38, 21-27. (In Chinese)
[12] Shangguan, M., Xia, H., Wang, C., et al. (2016) All-Fiber Upconversion High Spectral Resolution wind Lidar Using a Fabry- Perot Interferometer. Optics Express, 24, 19322-19336. https://doi.org/10.1364/OE.24.019322
[13] Kruse, P.W., McGlauchlin, L.D. and McQuistan, R.B. (1962) Elements of Infrared Technology: Generation, Transmission and Detection. Wiley, New York.
[14] Kim, I., McArthur, B. and Korevaar, E. (2001) Comparison of Laser Beam Propagation at 785 nm and 1550 nm in Fog and Haze for Optical Wireless Communications. International Society for Optics and Photonics, 26-37. https://doi.org/10.1117/12.417512
[15] Al Naboulsi, M. (2004) Fog Attenuation Prediction for Optical and Infrared Waves. Optical Engineering, 43, 319-329. https://doi.org/10.1117/1.1637611
[16] Grabner, M. and Kvicera, V. (2011) The Wavelength Dependent Model of Extinction in Fog and Haze for Free Space Optical Communication. Optics Express, 19, 3379-3386. https://doi.org/10.1364/OE.19.003379
[17] Claus, W. (2006) Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere Springer, Berlin.
[18] Gong, W., Zhang, J., Mao, F., et al. (2010) Measurements for Profiles of Aerosol Extinction Coeffcient, Backscatter Coeffcient, and Lidar Ratio over Wuhan in China with Raman/Mie Lidar. Chinese Optics Letters, 8, 533-536.
[19] Sasano, Y. (1996) Tropospheric Aerosol Extinction Coefficient Profiles Derived from Scanning Lidar Measurements over Tsukuba, Japan, from 1990 to 1993. Applied Optics, 35, 4941-4952. https://doi.org/10.1364/AO.35.004941
[20] Xia, H., Shentu, G., Shangguan, M., et al. (2015) Long-Range Micro-Pulse Aerosol Lidar at 1.5 μm with an Upconversion Single-Photon Detector. Optics Letters, 40, 1579-1582. https://doi.org/10.1364/OL.40.001579
[21] Shentu, G., Pelc, J.S., Wang, X., et al. (2013) Ultralow Noise Up-Conversion Detector and Spectrometer for the Telecom Band. Optics Express, 21, 13986-13991. https://doi.org/10.1364/OE.21.013986