一次暴雨天气中云微物理属性的垂直分布特征
Vertical Distribution Characteristic of Microphysical Properties in Clouds during Rainstorm Weather
DOI: 10.12677/AG.2016.66050, PDF, HTML, XML, 下载: 1,442  浏览: 2,658  科研立项经费支持
作者: 荆海亮:新疆维吾尔自治区人工影响天气办公室,新疆 乌鲁木齐;戎博, 周建勋:精河县气象局,新疆 精河;马禹:新疆维吾尔自治区气候中心,新疆 乌鲁木齐
关键词: 微物理属性垂直分布天山山脉Cloud Microphysical Property Vertical Distribution Tianshan Mountain
摘要: 通过云微观物理属性垂直结构的分析,对了解降水形成机制和提高人工增水效率具有重要意义。以2007年7月9日至10日天山山脉一次暴雨过程为例,利用CloudSat卫星2B-CWC-RO数据集提供的冰粒子等效半径(IER)、水粒子等效半径(LER)、冰水含量(IWC)、液态水含量(LWC),对暴雨过程中云微观物理属性的分析表明,在暴雨过程中IER、LER、IWC、LWC的平均值分别为29.5 μm、13.9 μm、74.3 mg/m3、138.8 mg/m3。四个微物理量在低值段出现频率最高,中值段和高值段出现频率较少。在垂直高度上四个微物理量随高度呈单峰分布,在云层上部8~10 km出现较多,出现频率占整个云层的1/3。
Abstract: It is significant for understanding of precipitation formation mechanism and increasing the effi-ciency of artificially enhancing precipitation by analyzing the cloud microphysical properties in vertical structure. Taking the rainstorm from July 9th to 10th in 2007 over Tianshan Mountain as an example, by use of the data of ice particle equivalent radius (IER), water particle equivalent ra-dius (LER), ice water content (IWC), and liquid water content (LWC) obtained from CloudSat satellite, 2B-CLDCLASS dataset and 2B-CWC-RVOD dataset, through the analysis of cloud microphysical properties, it shows that the average values of IER, LER, IWC, LWC are respectively 29.5 μm, 13.9 μm, 74.3 mg/m3, 138.8 mg/m3. The occurrence frequency of the low value section of these four microphysical parameters is higher while that of the moderate and high are lower. These four mi-crophysical parameters show single-peak distribution in vertical height and its occurrence fre-quency is much higher in 8~10 km above the cloud that accounts for 1/3 of all.
文章引用:荆海亮, 戎博, 周建勋, 马禹. 一次暴雨天气中云微物理属性的垂直分布特征[J]. 地球科学前沿, 2016, 6(6): 476-481. http://dx.doi.org/10.12677/AG.2016.66050

参考文献

[1] Stephens, G.L., Vane, D.G., Tanelli, S., et al. (2008) CloudSat Mission: Performance and Early Science after the First Year of Operation. Journal of Geophysical Research, 113, D00A18.
https://doi.org/10.1029/2008jd009982
[2] Lee, S., Kahn, B.H. and Teixeira, J. (2010) Characterization of Cloud Liquid Water Content Distributions from CloudSat. Journal of Geophysical Research, 115, D20203.
[3] Kawamoto, K. and Suzuki, K. (2013) Comparison of Water Cloud Microphysics over Mid-Latitude Land and Ocean Using CloudSat and MODIS Observations. Journal of Quantitative Spectroscopy & Radiative Transfer, 122, 13-24.
https://doi.org/10.1016/j.jqsrt.2012.12.013
[4] Guo, Z. and Zhou, T. (2015) Seasonal Variation and Physical Properties of the Cloud System over Southeastern China Derived from CloudSat Products. Advances in Atmospheric Science, 32, 659-670.
https://doi.org/10.1007/s00376-014-4070-y
[5] 周毓荃, 赵姝慧. CloudSat卫星及其在天气和云观测分析中的应用[J]. 南京气象学院学报, 2008, 31(5): 603-614.
[6] 杨大生, 王普才. 中国地区夏季6~8月云水含量的垂直分布特征[J]. 大气科学, 2012, 36(1): 89-101.
[7] 杨冰韵, 张华, 彭杰, 等. 利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J]. 高原气象, 2014, 33(4): 1105-1118.
[8] 张华, 杨冰韵, 彭杰, 等. 东亚地区云微物理量分布特征的CloudSat卫星观测研究[J]. 大气科学, 2015, 39(2): 235-248.
[9] 邓军英, 邱昀, 陈勇航, 等. 强降雨过程中冰云粒子等效半径的垂直分布及其与降水的相关性[J]. 自然灾害学报, 2014, 23(2): 120-129.
[10] 邓军英, 丁明月, 王文彩, 等. 冰云粒子微物理属性在一次强降雨过程中的垂直分布[J]. 干旱区地理, 2016, 39(1): 590-599.
[11] 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1): 1-9.
[12] 孙桂燕, 郭玲鹏, 常存, 等. 新疆天山中段南北坡水储量变化对比分析[J]. 干旱区地理, 2016, 39(2): 254-264.
[13] 夏富强, 唐宏, 杨德刚, 等. 绿洲城市水资源压力及其对城市发展的影响-以乌鲁木齐为例[J]. 干旱区地理, 2014, 37(2): 380-387.
[14] 周和平, 翟超, 孙志锋, 等. 新疆水资源综合利用效果及发展变化分析[J]. 干旱区资源与环境, 2016, 30(1): 95- 100.
[15] Wang, X. and Ma, Y. (2015) The Effect Evaluation of Weather Modification in the Range of 2009-2010 Years in Xinjiang. Journal of Water Resources Research, 4, 450-457.
https://doi.org/10.12677/JWRR.2015.45055