|
[1]
|
宇霄, 罗晓光, 陈贵锋等. 第一性原理计算XHfO3(X = Ba, Sr)的结构、弹性和电子特性[J]. 物理学报, 2007, 56(9): 5366-5370.
|
|
[2]
|
I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii. First-principles calculations of the elastic and electronic properties of the cubic perovskites SrMO3 (M = Ti, V, Zr and Nb) in comparison with SrSnO3. Solid State Sciences, 2008, 10(2): 217-225.
|
|
[3]
|
K. Y. Hong, S. H. Kim, Y. J. Heo, et al. Metal-insulator transitions of SrTi1–xVxO3 solid solution system. Solid State Communications, 2002, 123(6-7): 305-310.
|
|
[4]
|
C. M. I. Okoye. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. Journal of Physics: Condensed Matter, 2003, 15(35): 5945-5958.
|
|
[5]
|
Y. S. Lee, J. S. Lee, T. W. Noh, et al. Systematic trends in the electronic structure parameters of the 4d transition-metal oxides SrMO3 (M = Zr, Mo, Ru, and Rh). Physical Review B, 2003, 67(11): 113101.
|
|
[6]
|
S. W. Lin, Z. L. Xiu, J. A. Liu, et al. Combustion synthesis and characterization of perovskite SrTiO3 nanopowders. Journal of Alloys and Compounds, 2008, 457(1-2): L12-L14.
|
|
[7]
|
E. Mete, R. Shaltaf, and Ş. Ellialtıoğlu. Electronic and structural properties of a 4d perovskite: Cubic phase of SrZrO3. Physical Review B, 2003, 68(3): Article ID 035119.
|
|
[8]
|
V. M. Longo, L. S. Cavalcante, A. T. De Figneiredo, et al. Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO3 powders. Applied Physics Letters, 2007, 90(9): 091906.
|
|
[9]
|
S. Yamanaka, T. Maekawa, H. Muta, et al. Thermophysical properties of SrHfO3 and SrRuO3. Journal of Solid State Chemistry, 2004, 177(10): 3484-3489.
|
|
[10]
|
S. Yamanaka, T. Maekawa, H. Muta, et al. Thermal and mechanical properties of SrHfO3. Journal of Alloys and Compounds, 2004, 381(1-2): 295-300.
|
|
[11]
|
H. Murata, T. Yamamoto, H. Moriwake, et al. Lattice dynamics and thermal properties of SrHfO3 by first-principles calculations. Physica Status Solidi (B), 2009, 246(7): 1628-1633.
|
|
[12]
|
C. Rossel, M. Sousa, C. Marchiori, et al. SrHfO3 as gate dielectric for future CMOS technology. Microelectronic Engineering, 2007, 84(9-10): 1869-1873.
|
|
[13]
|
A. Hoffman. Untersuchungen uber Verbindungen mit Perow- skitstruktur. Z. Journal of Physical Chemistry B, 1935, 28(1): 65-77.
|
|
[14]
|
B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos. High- temperature phase transitions in SrHfO3. Physical Review B, 1999, 60(5): 2972-2975.
|
|
[15]
|
M. Kitamura and H. Chen. Electronic structure calculations of perovskite-type oxides using the self-consistent-charge extended Hückel tight-binding method. Ferroelectrics, 1998, 210(1): 13-29.
|
|
[16]
|
R. Vali. Structural phases of SrHfO3. Solid State Communications, 2008, 148(1-2): 29-31.
|
|
[17]
|
M. D. Segall, P. J. D. Lindan, M. J. Probert, et al. First-principles simulation: ideas, illustrations and the castep code. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2743.
|
|
[18]
|
Q. J. Liu, Z. T. Liu, L. P. Feng, et al. Mechanical and thermodynamic properties of seven phases of SrHfO3: First-principles calculations. Computational Materials Sciences, 2010, 48(3): 677- 679.
|
|
[19]
|
A. Reuss, Z. Angew. Berechnung del fliessgrenze von misch- kristallen auf grund der plastizitatbedingung for einkristalle. Math Mech, 1929, 9(1): 49-58.
|
|
[20]
|
W. Voigt. Lehrbuch der kristallphysik: Teubner-Leipzig. New York: Macmillan, 1928.
|
|
[21]
|
R. Hill. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952, 65(5): 349- 354.
|
|
[22]
|
O. Beckstein, J. E. Klepeis, G. L. W. Hart, et al. First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Physical Review B, 2001, 63(13): Article ID 134112.
|
|
[23]
|
M. Sousa, C. Rossel, C. Marchiori, et al. Optical properties of epitaxial SrHfO3 thin films grown on Si. Journal of Applied Physics, 2007, 102(10): Article ID 104103.
|