地下水污染研究与修复技术综述
Overview of Groundwater Pollution Research and Remediation Technology
DOI: 10.12677/AEP.2016.66026, PDF, HTML, XML, 下载: 2,699  浏览: 6,049 
作者: 田薇薇, 张 明*, 赵怡阳*, 俞汉宁:浙江博世华环保科技有限公司,浙江 杭州;段德超, 陈昆柏*:浙江博世华环保科技有限公司,浙江 杭州;浙江博世华固废处理处置和污染修复技术研究院,浙江 杭州;温俊明*:浙江博世华环保科技有限公司,浙江 杭州;浙江博世华环保科技有限公司院士工作站,浙江 杭州
关键词: 地下水污染监测迁移转化修复技术Groundwater Pollution Monitoring Transportation and Transformation Remediation Technology
摘要: 本文从地下水污染的定义和地下水学科的兴起出发,系统论述了地下水污染的调查监测技术,总结了地下水污染的迁移转化研究手段,综述了常见地下水修复技术的最新研究进展,并在此基础上提出存在的问题和今后研究的重点,以期对我国环境污染治理和生态文明建设有所帮助。
Abstract: Beginning with the discussion of groundwater definition and the rise of groundwater subject, this paper presented the investigation and monitoring technology of the groundwater, and summarized the main research method of the migration and transformation of the groundwater. More importantly, this paper overviewed the commonly used groundwater remediation technology, and pointed out the existing problems and the research emphasis in the future, hoping to promote the development of groundwater subject and the construction of ecological civilization in our country.
文章引用:田薇薇, 段德超, 张明, 赵怡阳, 俞汉宁, 温俊明, 陈昆柏. 地下水污染研究与修复技术综述[J]. 环境保护前沿, 2016, 6(6): 206-228. http://dx.doi.org/10.12677/AEP.2016.66026

参考文献

[1] 2014年中国水资源公报[R]. 中华人民共和国水利部, 2014.
[2] Barbash, J.E. and Roberts, P.V. (1986) Volatile Organic Chemical Contamination of Groundwater Resources in the U.S. Journal (Water Pollution Control Federation), 58, 343-348.
[3] Barbash, J.E., Thelin, G.P., Kolpin, D.W. and Gilliom, R.J. (2001) Major Herbicides in Ground Water: Results from the National Water-Quality Assessment. Journal of Environmental Quality, 30, 831-845. https://doi.org/10.2134/jeq2001.303831x
[4] 王昭, 石建省, 张兆吉, 等. 地下水有机污染研究综述[C]//中国地质学会. 第四届海峡两岸土壤及地下水污染与整治研讨会论文集. 西安. 2008: 272-276.
[5] 金阳, 姜月华, 李云. 地下水砷污染研究进展[J]. 地下水, 2015, 37(1): 67-69.
[6] 张晶, 张峰, 马烈. 多相抽提和原位化学氧化联合修复技术应用——某有机复合污染场地地下水修复工程案例[J]. 环境保护科学, 2016, 43(3): 154-158.
[7] 井柳新, 程丽. 地下水污染原位修复技术研究进展[J]. 水处理技术, 2010, 36(7): 6-9.
[8] Matthess, G. (1984) Unsaturated Zone Pollution by Heavy Metals. In: Yaron, B., Dagan, G. and Goldshmid, J., Eds., Pollutants in Porous Media, Springer, Berlin Heidelberg, 79-93. https://doi.org/10.1007/978-3-642-69585-8_8
[9] Legrand, H.E. (1965) Patterns of Contaminated Zones of Water in the Ground. Water Resources Research, 1, 83-95. https://doi.org/10.1029/WR001i001p00083
[10] De Laguna, W. (1966) A Hydrologic Analysis of Postulated Liquid-Waste Releases. Brookhaven National Laboratory, Suffolk County, New York.
[11] Gillham, R.W. and Cherry, J.A. (1982) Contaminant Migration in Saturated Unconsolidated Geologic Deposits. Geological Society of America Special Papers, 189, 31-62.
[12] Schwille, F. (1981) Groundwater Pollution in Porous Media by Fluids Immiscible with Water. Science of the Total Environment, 21, 451-463.
[13] 方志杰. 水文地质条件对城市地下水污染的影响[J]. 环境保护, 1979(1): 18-20.
[14] 官宜文, 刘建新, 郑瑶青, 孙亦樑. 乐果农药厂有机磷化合物对周围地下水污染的研究[J]. 环境科学, 1979(2).
[15] G. Frank, 陈恩健. 肥料使用与地表水和地下水污染的关系[J]. 土壤学进展, 1979, 7(3).
[16] 张绍增. 关于广西岩溶地下水污染类型及防治问题[J]. 水文地质工程地质, 1982(4): 33.
[17] 李建庚. 城市地下水污染及综合治理措施[J]. 甘肃环境研究与监测, 1984(4): 18-24.
[18] Kurwadkar, S. (2014) Emerging Trends in Groundwater Pollution and Quality. Water Environment Research, 86, 1677-1691. https://doi.org/10.2175/106143014X14031280668290
[19] Elias, D., Angeliki, M., Vasiliki, M., Maria, T. and Christina, Z. (2014) Geospatial Investigation into Groundwater Pollution and Water Quality Supported by Satellite Data: A Case Study from the Evros River (Eastern Mediterranean). Pure and Applied Geophysics, 171, 977-995. https://doi.org/10.1007/s00024-012-0621-2
[20] 胡丽娟, 董晓丹, 周琪. 零价铁修复土壤及地下水的PRB技术[J]. 环境保护科学, 2005, 31(4): 48-50.
[21] 刘翔, 唐翠梅, 陆兆华, 卢欣, 李淼. 零价铁PRB技术在地下水原位修复中的研究进展[J]. 环境科学研究, 2013, 26(12): 1309-1315.
[22] 朱雪强, 韩宝平, 尹儿琴. 地下水DNAPLs污染的研究进展[J]. 四川环境, 2005, 24(2): 65-70.
[23] 崔俊芳, 郑西来, 林国庆. 地下水有机污染处理的渗透性反应墙技术[J]. 水科学进展, 2003, 14(3): 363-367.
[24] 陆泗进, 王红旗. 地下水污染修复的可渗透性反应墙技术[J]. 上海环境科学, 2005(6): 231-236.
[25] 赵琪, 苏小四, 左恩德, 武显仓, 马飞华. 某石油烃污染场地包气带介质及含水介质TPH污染特征[J]. 科技导报, 2015, 33(7): 25-29.
[26] 胡俊杰, 闾春林, 周红, 张亚珍, 菅小东. 卤代脂肪烃鱼类急性毒性QSAR模型研究[J]. 环境化学, 2010, 29(1): 48-52.
[27] 李佳乐, 张彩香, 王焰心, 廖小平, 姚林林, 刘敏, 徐亮. 太原市小店区污灌区地下水中多环芳烃与有机氯农药污染特征及分布规律[J]. 环境科学, 2015, 36(1): 172-178.
[28] 崔学慧, 李炳华, 陈鸿汉. 太湖平原城近郊区浅层地下水中多环芳烃污染特征及污染源分析[J]. 环境科学, 2008, 29(7): 1806-1810.
[29] 邓少坡, 骆永明, 宋静, 等. 典型地区多介质环境中多氯联苯、镉致癌风险评估[J]. 土壤学报, 2011, 48(4): 731-742.
[30] 黄益宗, 郝晓伟, 雷鸣, 铁柏清. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 3(3): 409-417.
[31] 范拴喜, 甘卓亭, 李美娟, 等. 土壤重金属污染评价方法进展[J]. 中国农学通报, 2010, 26(17): 310-315.
[32] 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 2014(3): 315-320.
[33] 王莹, 陈玉成, 李章平. 我国城市土壤重金属的污染格局分析[J]. 环境化学, 2012, 31(6): 763-770.
[34] Haloi, N. and Sarma, H.P. (2012) Heavy Metal Contaminations in the Groundwater of Brahmaputra Flood Plain: An Assessment of Water Quality in Barpeta District, Assam (India). Environmental Monitoring and Assessment, 184, 6229-6237. https://doi.org/10.1007/s10661-011-2415-x
[35] Kumar, M., Furumai, H., Kurisu, F. and Kasuga, I. (2013) Potential Mobility of Heavy Metals through Coupled Application of Sequential Extraction and Isotopic Exchange: Comparison of Leaching Tests Applied to Soil and Soakaway Sediment. Chemosphere, 90, 796-804. https://doi.org/10.1016/j.chemosphere.2012.09.082
[36] Murakami, M., Nakajima, F. and Furumai, H. (2008) The Sorption of Heavy Metal Species by Sediments in Soakaways Receiving Urban Road Runoff. Chemosphere, 70, 2099-2109. https://doi.org/10.1016/j.chemosphere.2007.08.073
[37] 孙辉. 重金属污染地下水的电动力学修复技术[J]. 徐州建筑职业技术学院学报, 2005, 5(3): 24-26.
[38] 杨强, 李金轩, 丁伟翠. 浅析地下水污染的主要途径、危害及防治[J]. 西部探矿工程, 2013, 29(6): 72-75.
[39] 梁健, 娄华君, 张征. GMS在地下水污染迁移模拟中的应用[J]. 安徽农业科学, 2016, 44(22): 239-241.
[40] Chen, B.B., Gong, H.L., Li, X.J., Lei, K.C., Lin, Z. and Wang, Y.B. (2013) The Impact of Load Density Differences on Land Subsidence Based on Build-Up Index and PS-InSAR Technology. Spectroscopy and Spectral Analysis, 33, 2198-2202.
[41] Bressan, M.A. and Dos Anjos, C.E. (2003) Techniques of Remote Sensing Applied to the Environmental Analysis of Part of an Aquifer Located in the Sao Jose dos Campos Region sp, Brazil. Environmental Monitoring and Assessment, 84, 99-109. https://doi.org/10.1023/A:1022895332069
[42] 张艳, 徐斌. 信息技术支持下的灌区地下水水质调查评价[J]. 水资源保护, 2010, 26(4): 30-34.
[43] 2004 H J T. 地下水环境监测技术规范[S]. 2004.
[44] 杨建青, 章树安, 陈喜, 等. 国内外地下水监测与管理比较研究[J]. 水文, 2013, 33(3): 18-24.
[45] Rifai, H., Haasbeek, J., Bedient, P., et al. (1987) Bioplume II Computer Model of Two-Dimensional Contaminant Transport under the Influence of Oxygen-Limited Biodegradation in Ground Water (for Microcomputers). Model-Simulation. Environmental Protection Agency, Ada, OK, USA. Robert S. Kerr Environmental Research Lab.
[46] Langevin, C.D. and Guo, W. (2006) MODFLOW/MT3DMS-Based Simulation of Variable-Density Ground Water Flow and Transport. Ground Water, 44, 339-351. https://doi.org/10.1111/j.1745-6584.2005.00156.x
[47] Bumb, A.C., Mitchell, J.T. and Gifford, S.K. (1997) Design of a Ground-Water Extraction/Reinjection System at a Superfund Site Using MODFLOW. Ground Water, 35, 400-408. https://doi.org/10.1111/j.1745-6584.1997.tb00099.x
[48] Heinzer, T. and Hansen, D.T. (1996) Development of a Graphical User Interface in GIS Raster Format for the Finite Difference Ground-Water Model Code, MODFLOW. American Society for Testing and Materials, 239-249.
[49] Knab, G., Rembe, M., Wenske, D., et al. (1998) A New AutoCAD-Based Graphical Interface to MODFLOW, MODPATH and MT3D Including Support for a New Mass Transport Simulation Algorithm (Front Limitation Algo-rithm). MODFLOW’98, Golden, 1998, 4-8.
[50] Tsou, M.-S. and Whittemore, D.O. (2001) User Interface for Ground-Water Modeling: ArcView Extension. Journal of Hydrologic Engineering, 6, 251-257. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(251)
[51] Bobba, A.G. (2012) Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges. Water Resources Management, 26, 4105-4131. https://doi.org/10.1007/s11269-012-0134-x
[52] Rifai, H.S., Newell, C.J., Gonzales, J.R. and Wilson, J.T. (2000) Modeling Natural Attenuation of Fuels with Bioplume III. Journal of Environmental Engineering, 126, 428-438. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:5(428)
[53] Gupta, S.K., Cole, C.R. and Pinder, G. (1984) A Finite-Element Three-Dimensional Groundwater (FE3DGW) Model for a Multiaquifer System. Water Resources Research, 20, 553-563. https://doi.org/10.1029/WR020i005p00553
[54] Yeh, G. and Ward, D. (1981) FEMWASTE: A Finite-Element Model of Waste Transport through Porous Saturated-Unsaturated Media. Oak Ridge National Lab., TN, USA.
[55] Guiguer, N., Molson, J., Frind, E., et al. (1994) FLOTRANS User Guide. Waterloo Centre for Groundwater Research and Waterloo Hydrogeologic Inc., Waterloo, Canada.
[56] Schroeder, P., Morgan, J., Walski, T., et al. (1984) The Hydrologic Evaluation of Landfill Performance (HELP) Model, Volume I, User’s Guide for Version 1. US EPA, Cincinnati.
[57] Harbaugh, A.W. and Mcdonald, M.G. (1996) Programmer’s Documentation for MODFLOW-96, an Update to the US Geological Survey Modular Finite-Difference Ground-Water Flow Model. US Geological Survey, Branch of Information Services [distributor].
[58] Chan, T., Scheier, N. and Guvanasen, V. (1999) MOTIF Version 3.2 Theory Manual. Report 06819-REP-01200-0091- R00, Ontario Power Generation Inc., Nuclear Waste Management Division, Toronto, Ontario.
[59] Prickett, T.A., Naymik, T.G. and Lonnquist, C.G. (1981) A “Random Walk” Solute Transport Model for Selected Groundwater Quality Evaluations. Bulletin 65, 103, 68.
[60] Clement, T., Sun, Y., Hooker, B. and Petersen, J.N. (1998) Modeling Multispecies Reactive Transport in Ground Water. Groundwater Monitoring & Remediation, 18, 79-92. https://doi.org/10.1111/j.1745-6592.1998.tb00618.x
[61] Huyakorn, P., Broome, R., Kretschek, A., et al. (1984) SEFTRAN: A Simple and Efficient Flow and Transport Code. GeoTrans Inc., Herndon, Virginia.
[62] Voss, C.I. and Provost, A.M. (1984) Sutra. United States Geological Survey Water Resources Investigation Report.
[63] Kumar, A. and Lee, J.B. (1991) Software to Study Environmental Effects of Hazardous Waste Sites. Environmental Progress & Sustainable Energy, 10, M7-M10. https://doi.org/10.1002/ep.670100208
[64] Zheng, C., Anderson, M.P. and Bradbury, K.R. (1989) Effectiveness of Hydraulic Methods for Controlling Groundwater Contamination. Baltimore, Maryland: Groundwater Contamination. International Association of Hydrological Sciences, Washington DC, 173-179.
[65] Xi, D., Zhang, S.Y., He, Q.L., Chen, L., Zhang, J. and Huo, A.D. (2014) A Coupled Model Simulation And Application of Swat-Modflow Based on the Technology of GPR. Journal of Water Resource Research, 3, 298-306.
[66] Bhattacharjee, N.V. and Tollner, E.W. (2016) Improving Management of Windrow Composting Systems by Modeling Runoff Water Quality Dynamics Using Recurrent Neural Network. Ecological Modelling, 339, 68-76. https://doi.org/10.1016/j.ecolmodel.2016.08.011
[67] Menendez, A.N., Lecertúa, E.A., Badano, N.D. and García, P.E. (2015) Numerical Modeling to Define Remediation Actions for Water Quality in Streams. Journal of Applied Water Engineering and Research, 4, 1-15.
[68] Ünlü, K. and Demirekler, E. (2000) Modeling Water Quality Impacts of Petroleum Contaminated Soils in a Reservoir Catchment. Water, Air, and Soil Pollution, 120, 169-193. https://doi.org/10.1023/A:1005294109979
[69] Wang, S., Stiles, T., Flynn, T., et al. (2009) A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA. Water, Air, and Soil Pollution, 203, 193-206. https://doi.org/10.1007/s11270-009-0003-2
[70] Purandara, B.K., Varadarajan, N., Venkatesh, B. and Choubey, V.K. (2012) Surface Water Quality Evaluation and Modeling of Ghataprabha River, Karnataka, India. Environmental Monitoring and Assessment, 184, 1371-1378. https://doi.org/10.1007/s10661-011-2047-1
[71] Hesse, C., Krysanova, V. and Voß, A. (2012) Implementing In-Stream Nutrient Processes in Large-Scale Landscape Modeling for the Impact Assessment on Water Quality. Environmental Modeling & Assessment, 17, 589-611. https://doi.org/10.1007/s10666-012-9320-8
[72] 祝晓彬. 地下水模拟系统GMS软件[J]. 水文地质工程地质, 2003, 30(5): 53-55.
[73] 陈平, 李文攀, 刘廷良. 日本地下水环境质量标准及监测方法[J]. 中国环境监测, 2011, 27(6): 59-63.
[74] 中华人民共和国环境保护部. 污染场地风险评估技术导则[M]. 北京: 中国环境科学出版社, 2014.
[75] Liu, Y., Zhou, A., Gan, Y., et al. (2013) Stable Carbon Isotope Fractionation during Trichloroethene Degradation in Magnetite-Catalyzed Fenton-Like Reaction. Journal of Contaminant Hydrology, 145, 37-43. https://doi.org/10.1016/j.jconhyd.2012.11.007
[76] Sahl, J.W., Munakata-Marr, J., Crimi, M.L. and Siegrist, R.L. (2007) Coupling Permanganate Oxidation with Microbial Dechlorination of Tetrachloroethene. Water Environment Research, 79, 5-12. https://doi.org/10.2175/106143006X136720
[77] Sra, K.S., Thomson, N.R. and Barker, J.F. (2013) Persulfate Injection into a Gasoline Source Zone. Journal of Contaminant Hydrology, 150, 35-44. https://doi.org/10.1016/j.jconhyd.2013.03.007
[78] Watts, R.J., Stanton, P.C., Howsawkeng, J. and Teel, A.L. (2001) Mineralization of a Sorbed Polycyclic Aromatic Hydrocarbon in Two Soils Using Catalyzed Hydrogen Peroxide. Water Research, 36, 4283-4292. https://doi.org/10.1016/S0043-1354(02)00142-2
[79] Chen, G., Hoag, G.E., Chedda, P., et al. (2001) The Mechanism and Applicability of in Situ Oxidation of Trichloroethylene with Fenton’s Reagent. Journal of Hazardous Materials, 87, 171-186. https://doi.org/10.1016/S0304-3894(01)00263-1
[80] Choi, H.-C., Lee, K.-Y., Choi, S.-I. and Lee, T.-J. (2010) Remediation of Diesel-Contaminated Soil by Fenton and Ozone Oxidation Process. Journal of Soil and Groundwater Environment, 15, 34-39.
[81] Jonsson, S., Persson, Y., Frankki, S., et al. (2007) Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils by Fenton’s Reagent: A Multivariate Evaluation of the Importance of Soil Characteristics and PAH Properties. Journal of Hazardous Materials, 149, 86-96. https://doi.org/10.1016/j.jhazmat.2007.03.057
[82] Pagano, M., Volpe, A., Lopez, A., Mascolo, G. and Ciannarella, R. (2011) Degradation of Chlorobenzene by Fenton-Like Processes Using Zero-Valent Iron in the Presence of Fe3+ and Cu2+. Environmental Technology, 32, 155-165. https://doi.org/10.1080/09593330.2010.490855
[83] Miao, Z., Gu, X., Lu, S., et al. (2015) Perchloroethylene (PCE) Oxidation by Percarbonate in Fe2+-Catalyzed Aqueous Solution: PCE Performance and Its Removal Mechanism. Chemosphere, 119, 1120-1125. https://doi.org/10.1016/j.chemosphere.2014.09.065
[84] Yang, W., Qiu, Z., Zhao, Z., Lu, S., Sui, Q. and Gu, X. (2016) To Postpone the Precipitation of Manganese Oxides in the Degradation of Tetrachloroethylene by Controlling the Permanganate Concentration. Environmental Technology, 38, 1-17.
[85] Loomer, D.B., Al, T.A., Banks, V.J., Parker, B.L. and Mayer, K.U. (2011) Manganese and Trace-Metal Mobility under Reducing Conditions Following in Situ Oxidation of TCE by KMnO4: A Laboratory Column Experiment. Journal of Contaminant Hydrology, 119, 13-24. https://doi.org/10.1016/j.jconhyd.2010.08.005
[86] Lemaire, J., Croze, V., Maier, J. and Simonnot, M.-O. (2011) Is It Possible to Remediate a BTEX Contaminated Chalky Aquifer by in Situ Chemical Oxidation. Chemosphere, 84, 1181-1187. https://doi.org/10.1016/j.chemosphere.2011.06.052
[87] Liao, X., Zhao, D. and Yan, X. (2011) Determination of Potassium Permanganate Demand Variation with Depth for Oxidation-Remediation of Soils from a PAHs-Contaminated Coking Plant. Journal of Hazardous Materials, 193, 164- 170. https://doi.org/10.1016/j.jhazmat.2011.07.045
[88] Huang, K.-C., Hoag, G.E., Chheda, P., et al. (2002) Kinetics and Mechanism of Oxidation of Tetrachloroethylene with Permanganate. Chemosphere, 46, 815-825. https://doi.org/10.1016/S0045-6535(01)00186-2
[89] Phatai, P., Wittayakun, J., Grisdanurak, N., et al. (2010) Removal of Manganese Ions from Synthetic Groundwater by Oxidation Using KMnO4 and the Characterization of Produced MnO2 Particles. Water Science & Technology, 62, 1719-1726. https://doi.org/10.2166/wst.2010.462
[90] Liang, S.H., Chen, K.F., Wu, C.S., Lin, Y.H. and Kao, C.M. (2014) Development of KMnO4-Releasing Composites for in Situ Chemical Oxidation of TCE-Contaminated Groundwater. Water Research, 54, 149-158. https://doi.org/10.1016/j.watres.2014.01.068
[91] 刘红梅, 褚华强, 陈家斌, 等. 过硫酸盐在地下水和土壤修复中的应用[J]. 现代化工, 2015, 35(4): 42-46.
[92] Huang, K.-C., Couttenye, R.A. and Hoag, G.E. (2002) Kinetics of Heat-Assisted Persulfate Oxidation of Methyl tert-Butyl Ether (MTBE). Chemosphere, 49, 413-420. https://doi.org/10.1016/S0045-6535(02)00330-2
[93] Antoniou, M.G. and Andersen, H.R. (2015) Comparison of UVC/S2O82− with UVC/H2O2 in Terms of Efficiency and Cost for the Removal of Micropollutants from Groundwater. Chemosphere, 119, S81-S88. https://doi.org/10.1016/j.chemosphere.2014.03.029
[94] Liang, C., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2004) Persulfate Oxidation for in Situ Remediation of TCE. I. Activated by Ferrous Ion with and without a Persulfate-Thiosulfate Redox Couple. Chemosphere, 55, 1213-1223. https://doi.org/10.1016/j.chemosphere.2004.01.029
[95] Zhou, L., Zheng, W., Ji, Y., et al. (2013) Ferrous-Activated Persulfate Oxidation of Arsenic(III) and Diuron in Aquatic System. Journal of Hazardous Materials, 263, 422-430. https://doi.org/10.1016/j.jhazmat.2013.09.056
[96] Gomes, H.I., Dias-Ferreira, C. and Ribeiro, A.B. (2012) Electrokinetic Remediation of Organochlorines in Soil: Enhancement Techniques and Integration with Other Remediation Technologies. Chemosphere, 87, 1077-1090. https://doi.org/10.1016/j.chemosphere.2012.02.037
[97] Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., et al. (1995) Electrokinetic Remediation: Basics and Technology Status. Journal of Hazardous Materials, 40, 117-137. https://doi.org/10.1016/0304-3894(94)00066-P
[98] Chibuike, G.U. and Obiora, S.C. (2014) Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science, 2014, Article ID: 752708. https://doi.org/10.1155/2014/752708
[99] Thomas, J.M. and Ward, C.H. (1989) In Situ Biorestoration of Organic Contaminants in the Subsurface. Environmental Science & Technology, 23, 760-766. https://doi.org/10.1021/es00065a004
[100] Andresen, J. and Bester, K. (2006) Elimination of Organophosphate Ester Flame Retardants and Plasticizers in Drinking Water Purification. Water Research, 40, 621-629. https://doi.org/10.1016/j.watres.2005.11.022
[101] 杨琦, 尚海涛, 李惠娣. 四氯乙烯(PCE)厌氧生物修复的国外研究进展[J]. 中国沼气, 2006, 24(2): 16-20.
[102] 金樑, 顾宗濂, 谢思琴, 等. 石油污染土壤及地下水的生物修复进展 [J]. 应用与环境生物学报, 1999, 5(S1): 130-135.
[103] 张胜, BI Er-ping, 毕二平, 陈立, 等. 微生物修复石油污染地下水的实验研究[J]. 现代地质, 2009, 23(1): 120-124.
[104] Ng, Y.S. and Chan, D.J.C. (2016) Wastewater Phytoremediation by Salvinia molesta. Journal of Water Process Engineering, in press.
[105] 熊善高, 李洪远, 丁晓, 莫训强. 植物修复技术修复污染地下水的案例分析[C]//第六届海峡两岸土壤和地下水污染与整治研讨会论文集. 2012.
[106] Zein, M.M., Suidan, M.T. and Venosa, A.D. (2006) Bioremediation of Groundwater Contaminated with Gasoline Hydrocarbons and Oxygenates Using a Membrane-Based Reactor. Environmental Science & Technology, 40, 1997-2003. https://doi.org/10.1021/es051593m
[107] Ferreira, L., Cobas, M., Tavares, T., Sanromán, M.A. and Pazos, M. (2013) Assessment of Arthrobacter viscosus as Reactive Medium for Forming Permeable Reactive Biobarrier Applied to PAHs Remediation. Environmental Science and Pollution Research, 20, 7348-7354. https://doi.org/10.1007/s11356-013-1750-6
[108] Oren, A.H. and Ozdamar, T. (2013) Hydraulic Conductivity of Compacted Zeolites. Waste Management & Research, 31, 634-640. https://doi.org/10.1177/0734242X13479434
[109] Di Natale, F., Di Natale, M., Greco, R., et al. (2008) Groundwater Protection from Cadmium Contamination by Permeable Reactive Barriers. Journal of Hazardous Materials, 160, 428-434. https://doi.org/10.1016/j.jhazmat.2008.03.015
[110] Fuller, C.C., Bargar, J.R. and Davis, J.A. (2003) Molecular-Scale Characterization of Uranium Sorption by Bone Apatite Materials for a Permeable Reactive Barrier Demonstration. Environmental Science & Technology, 37, 4642-4649. https://doi.org/10.1021/es0343959
[111] Kenneke, J.F., Mccutcheon, S.C. (2003) Use of Pretreatment Zones and Zero-Valent Iron for the Remediation of Chloroalkenes in an Oxic Aquifer. Environmental Science & Technology, 37, 2829-2835. https://doi.org/10.1021/es0207302
[112] Szecsody, J.E., Fruchter, J.S., Williams, M.D., Vermeul, V.R. and Sklarew, D. (2004) In Situ Chemical Reduction of Aquifer Sediments: Enhancement of Reactive Iron Phases and TCE Dechlorination. Environmental Science & Technology, 38, 4656-4663. https://doi.org/10.1021/es034756k
[113] Ayala-Parra, P., Sierra-Alvarez, R. and Field, J.A. (2016) Algae as an Electron Donor Promoting Sulfate Reduction for the Bioremediation of Acid Rock Drainage. Journal of Hazardous Materials, 317, 335-343. https://doi.org/10.1016/j.jhazmat.2016.06.011
[114] Huang, T., Li, D., Liu, K. and Zhang, Y. (2015) Heavy Metal Removal from MSWI Fly Ash by Electrokinetic Remediation Coupled with a Permeable Activated Charcoal Reactive Barrier. Scientific Reports, 5, Article No. 15412. https://doi.org/10.1038/srep15412
[115] Moraci, N. and Calabro, P.S. (2010) Heavy Metals Removal and Hydraulic Performance in Zero-Valent Iron/Pumice Permeable Reactive Barriers. Journal of Environmental Management, 91, 2336-2341. https://doi.org/10.1016/j.jenvman.2010.06.019
[116] Sulaymon, A.H., Faisal, A.A. and Khaliefa, Q.M. (2015) Cement Kiln Dust (CKD)-Filter Sand Permeable Reactive Barrier for the Removal of Cu(II) and Zn(II) from Simulated Acidic Groundwater. Journal of Hazardous Materials, 297, 160-172. https://doi.org/10.1016/j.jhazmat.2015.04.061
[117] Wilopo, W., Sasaki, K., Hirajima, T. and Yamanaka, T. (2008) Immobilization of Arsenic and Manganese in Contaminated Groundwater by Permeable Reactive Barriers Using Zero Valent Iron and Sheep Manure. Materials Transactions, 49, 2265-2274. https://doi.org/10.2320/matertrans.M-MRA2008827
[118] Suponik, T. (2013) Groundwater Treatment with the Use of Zero-Valent Iron in the Permeable Reactive Barrier Technology. Physicochemical Problems of Mineral Processing, 49.
[119] Gibert, O., De Pablo, J., Cortina, J.-L. and Ayora, C. (2010) In Situ Removal of Arsenic from Groundwater by Using Permeable Reactive Barriers of Organic Matter/Limestone/Zero-Valent Iron Mixtures. Environmental Geochemistry and Health, 32, 373-378. https://doi.org/10.1007/s10653-010-9290-1
[120] Borden, R.C. (2007) Effective Distribution of Emulsified Edible Oil for Enhanced Anaerobic Bioremediation. Journal of Contaminant Hydrology, 94, 1-12. https://doi.org/10.1016/j.jconhyd.2007.06.001
[121] Guerin, T.F., Horner, S., Mcgovern, T. and Davey, B. (2002) An Application of Permeable Reactive Barrier Technology to Petroleum Hydrocarbon Contaminated Groundwater. Water Research, 36, 15-24. https://doi.org/10.1016/S0043-1354(01)00233-0
[122] Gaber, H.M., Comfort, S.D., Shea, P.J. and Machacek, T.A. (2002) Metolachlor Dechlorination by Zerovalent Iron during Unsaturated Transport. Journal of Environmental Quality, 31, 962-969. https://doi.org/10.2134/jeq2002.0962
[123] Boni, M.R. and Sbaffoni, S. (2009) The Potential of Compost-Based Biobarriers for Cr(VI) Removal from Contamicated Groundwater: Colum Test. Journal of Hazardous Materials, 166, 1087-1095. https://doi.org/10.1016/j.jhazmat.2008.12.036
[124] Öztürk, Z., Tansel, B., Katsenovich, Y., Sukop, M. and Laha, S. (2012) Highly Organic Natural Media as Permeable Reactive Barriers: TCE Partitioning and Anaerobic Degradation Profile in Eucalyptus Mulch and Compost. Chemosphere, 89, 665-671. https://doi.org/10.1016/j.chemosphere.2012.06.006
[125] Chen, L., Liu, F., Liu, Y., et al. (2011) Benzene and Toluene Biodegradation down Gradient of a Zero-Valent Iron Permeable Reactive Barrier. Journal of Hazardous Materials, 188, 110-115. https://doi.org/10.1016/j.jhazmat.2011.01.076
[126] Borden, R.C. (2007) Concurrent Bioremediation of Perchlorate and 1,1,1-Trichloroethane in an Emulsified Oil Barrier. Journal of Contaminant Hydrology, 94, 13-33. https://doi.org/10.1016/j.jconhyd.2007.06.002
[127] 吴玉成. 治理地下水有机污染抽出处理技术影响因素分析[J]. 水文地质工程地质, 1998(1): 27-29.
[128] 姜烈, 何江涛, 姜永海, 刘菲. 地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学, 2014, 35(7): 2572-2578.
[129] Jochmann, M.A., Blessing, M., Haderlein, S.B. and Schmidt, T.C. (2006) A New Approach to Determine Method Detection Limits for Compound-Specific Isotope Analysis of Volatile Organic Compounds. Rapid Communications in Mass Spectrometry, 20, 3639-3648. https://doi.org/10.1002/rcm.2784
[130] 何士华, M.-K. Lee. 抽水-处理技术治理污染地下水的目标确定和运行监测评述[J]. 昆明理工大学学报(自然科学版), 2003, 28(3): 131-134.
[131] 陈功新, 王广才, 刘金辉, 邹国华. 地下水中的TCE污染去除模拟研究[J]. 东华理工大学学报(自然科学版), 2008, 31(4): 361-364.
[132] K.R. Reddy, Kosgi, S. and Zhou, J. (2009) A Review of In-Situ Air Sparging for the Remediation of VOC-Contaminated Saturated Soils and Groundwater. Hazardous Waste and Hazardous Materials, 12, 97-118. https://doi.org/10.1089/hwm.1995.12.97
[133] Marley, M.C., Hazebrouck, D.J. and Walsh, M.T. (1992) The Application of in Situ Air Sparging as an Innovative Soils and Ground Water Remediation Technology. Groundwater Monitoring and Remediation, 12, 137-145. https://doi.org/10.1111/j.1745-6592.1992.tb00044.x
[134] Adams, J.A., Reddy, K.R. and Tekola, L. (2011) Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study. International Journal of Environmental Research and Public Health, 8, 2226-2239.
[135] 陈华清, 李义连. 地下水苯系物污染原位曝气修复模拟研究[J]. 中国环境科学, 2010, 30(1): 46-51.
[136] 刘晓娜, 程莉蓉, 张可霓, 等. 地下水LNAPL层的原位曝气模拟研究[J]. 环境科学与技术, 2012, 35(2): 19-24.
[137] 刘志阳. 地下水污染修复技术综述[J]. 环境与发展, 2016, 28(2): 1-4.
[138] 王磊, 龙涛, 张峰, 等. 用于土壤及地下水修复的多相抽提技术研究进展[J]. 生态与农村环境学报, 2014, 30(2): 137-145.
[139] 李雨松. 空气扰动法(AS)处理氯苯污染地下水的研究[D]: [硕士学位论文]. 长春: 吉林大学, 2009.
[140] Zhang, J., Xu, Y., Li, W., et al. (2012) Enhanced Remediation of Cr (VI)-Contaminated Soil by Incorporating a Calcined-Hydrotalcite-Based Permeable Reactive Barrier with Electrokinetics. Journal of Hazardous Materials, 239-240, 128-134. https://doi.org/10.1016/j.jhazmat.2012.08.039
[141] Yin, W., Wu, J., Huang, W., Li, Y. and Jiang, G. (2016) The Effects of Flow Rate and Concentration on Nitrobenzene Removal in Abiotic and Biotic Zero-Valent Iron Columns. Science of the Total Environment, 560-561, 12-18. https://doi.org/10.1016/j.scitotenv.2016.03.238