纤维增强树脂基复合材料孔隙的研究
Research on Voids of Fiber Reinforced Polymer Composite
DOI: 10.12677/MS.2017.71004, PDF, HTML, XML, 下载: 1,656  浏览: 4,874 
作者: 于洪明, 游慧鹏, 陈江平, 屈 远:山东中车风电有限公司风电研究所,山东 济南
关键词: 复合材料孔隙机理表征方法力学性能Composite Void Mechanism Characterization Method Mechanical Properties
摘要: 纤维增强树脂基复合材料性能优异,广泛应用于航空航天及工业领域,而复合材料在成型过程中不可避免的产生孔隙缺陷,显著影响复合材料的力学性能。本文对纤维增强树脂基复合材料中孔隙的形成机理、测量表征方法以及孔隙对力学性能的影响进行了简要的概述。大量的试验研究表明,孔隙体积含量在0%~4%范围内时,含量每增加1%,层间剪切强度大约降低7%,层间剪切强度减少与孔隙近似呈线性关系。其它机械性能比层间剪切强度所受影响较低。
Abstract: Fiber reinforced polymers with excellent performance are widely used in the field of aerospace and industries. Voids couldn’t be avoided which affect the mechanical properties dramatically. Void forming mechanism of fiber reinforced polymers, characterization methods and effect of void on mechanical properties are reported in this paper. A large number of tests show that the interlayer strength is reduced by 7% with void content increase of 1% while void volume content is in the range of 0% - 4%. The effects of void on other mechanical properties are lower than those of the interlayer shear strength.
文章引用:于洪明, 游慧鹏, 陈江平, 屈远. 纤维增强树脂基复合材料孔隙的研究[J]. 材料科学, 2017, 7(1): 25-31. http://dx.doi.org/10.12677/MS.2017.71004

参考文献

[1] Loos, A.C. and Springer, G.S. (1983) Curing of Epoxy Matrix Composites. Journal of Composites Materials, 17, 135- 169.
[2] Kardos, J.L., Dudukovic, M.P. and Dave, R. (1986) Viod Growth and Transport during the Processing of Thermosetting Matrix Composites. Advances in Polymer Science, 80, 101-123. https://doi.org/10.1007/3-540-16423-5_13
[3] 张佐光, 张立功. 先进复合材料中主要缺陷分析[J]. 玻璃钢/复合材料, 2001, 1(2): 42-45.
[4] Ewins, P.D. and Childs, R. (1972) The Determination of Content by Volume of Fibre Resin and Voids in Carbon Fibre Reinforced Plastics. RAE, TR 72082.
[5] 俞金林, 晏雄. 纤维内部孔隙形态的表征[J]. 天津纺织科技, 2009(2): 22-24.
[6] 游红武. 碳纤维复合材料孔隙率超声检测和角度调整步进电机驱动电源研制[D]: [硕士学位论文]. 杭州: 浙江大学, 1993: 5-10.
[7] Martin, B.G. (1976) Ultrasonic Attenuation in Voided Fiber Reinforced Plastics. Non-Destructive Testing International, 9, 242-246.
[8] Hale, J.M. and Ashton, J.N. (1988) Ultrasonic Attenuation in Voided Fiber Reinforced Plastics. Non-Destructive Testing International, 21, 321-326.
[9] Jeong, H. and Hsu, D.K. (1995) Experimental Analysis of Porosity Induced Ultrasonic Attenuation and Velocity Change in Carbon Composites. Ultrasonics, 33, 195-203. https://doi.org/10.1016/0041-624X(95)00023-V
[10] 周晓军, 莫锦秋, 游红武. 碳纤维复合材料分布孔隙率的超声衰减检测方法[J]. 复合材料学报, 1997, 14(3): 107- 114.
[11] Ciliberto, A., Cavaccin, G., Salvett, I.O., et al. (2002) Porosity Detection in Composite Aeronautical Structures. Infrared Physics & Technology, 43, 139-143. https://doi.org/10.1016/S1350-4495(02)00132-9
[12] Stone, D.E. and Clarke, B. (1975) Ultrasonic Attenuation as a Measure of Void Content in Carbon Reinforced Plastics. Non-Destructive Testing, 8, 137-145. https://doi.org/10.1016/0029-1021(75)90023-7
[13] Hsu, D.K. and Nair, S.M. (1987) Evaluation of Porosity in Graphite Epoxy Composite by Frequency Dependence of Ultrasonic Attenuation. In: Thompson, D.O. and Chimenti, D.E., Eds., Review of Progress in Quantitative Nondestructive Evaluation, Springer, New York, 1185-1193. https://doi.org/10.1007/978-1-4613-1893-4_135
[14] Hsu, D.K. (1988) Ultrasonic Measurements of Porosity in Woven Graphite Polyamide Composites. In: Thompson, D.O. and Chimenti, D.E., Eds., Review of Progress in Quantitative Nondestructive Evaluation, Springer, New York, 1063- 1068. https://doi.org/10.1007/978-1-4613-0979-6_22
[15] Judd, N.C.W. and Wright, W.W. (1978) Void and Their Effects on the Mechanical Properties of Composites. SAMPE Journal, 14, 10-14.
[16] Olivier, P., Cottu, J.P. and Ferret, B. (1995) Effects of Cure Cycle Pressure and Voids on Some Mechanical Properties of Carbon/Epoxy laminate. Composites, 26, 509-515. https://doi.org/10.1016/0010-4361(95)96808-J
[17] Almeida, S.F.M. and Nogueira, N.Z.S. (1994) Effects of Voids Content on the Strength of Composite Laminates. Composite Structures, 28, 139-148. https://doi.org/10.1016/0263-8223(94)90044-2
[18] Hagstrand, P.O., Bonjour, F. and Manson, J.A.E. (2005) The Influence of Void Content on the Structural Fexural Performance of Unidirectional Glass Fibre Reinforced Polypropylene Composites. Composites Part A: Applied Science and Manufacturing, 36, 705-714. https://doi.org/10.1016/j.compositesa.2004.03.007
[19] Bowles, K.J. and Frimpong, S. (1992) Voids Effects on the Interlaminar Shear Strength of Unidirectional Graphite Fiber Reinforced Composites. Composite Materials, 26, 1487-1509. https://doi.org/10.1177/002199839202601006
[20] 刘志真, 李宏运, 益小苏. 孔隙率对聚酰亚胺复合材料力学性能的影响[J]. 材料工程. 2005(9): 56-58.