钙钛矿CH3NH3PbBr3电子结构和光吸收特性的第一性原理研究
First-Principle Study of Electronic Structure and Optical Absorption of Perovskite CH3NH3PbBr3
DOI: 10.12677/MS.2017.71009, PDF, HTML, XML, 下载: 2,300  浏览: 7,647  国家自然科学基金支持
作者: 刘洪飞, 王 娜:天津城建大学理学院,天津;张众维:天津城建大学计算机与信息工程学院,天津
关键词: 第一性原理CH3NH3PbBr3电子性质光吸收First-Principle CH3NH3PbBr3 Electronic Properties Optical Absorption
摘要: 本文采用基于密度泛函理论的第一性原理方法,研究了正交晶系(Pnma) CH3NH3PbBr3的电子结构和光吸收性质。结果表明,采用optB86b+vdWDF交换关联泛函计算得到的晶格结构和带隙宽度,与实验结果符合的很好,说明包含范德瓦尔斯作用的vdW-DF泛函能够更好的描述该体系的物理性质。态密度分析表明,有机分子CH3NH3对于价带顶和导带底的贡献较小,价带顶主要是由Br 4p轨道组成,导带底是由Pb 6p轨道组成。吸收系数计算结果表明材料在360 nm和430 nm附近出现两个吸收峰,且随着波长的增加,吸收强度呈现下降的趋势,以上结果为CH3NH3PbBr3在光电领域的应用提供可靠的理论基础。
Abstract: Using first-principle calculations based on density functional theory (DFT), we have studied the electronic structure and optical properties of orthorhombic perovskite CH3NH3PbBr3 (Pnma). The structural properties and band gap value calculated with the optB86b+vdWDF functional are in good agreement with experimental results. Thus, consideration of the vdW interactions is im-portant for theoretical investigation of CH3NH3PbBr3. The analysis of partial density of states shows that the organic CH3NH3 makes little contribution to the top valence (VBM) and bottom conduction bands (CBM). The VBM is mainly composed of Br 4p states, while the CBM is dominated by Pb 6p states. Calculated absorption coefficient of CH3NH3PbBr3 shows an absorption peak around 360 nm and a weak one around 430 nm. Meanwhile, absorption intensity decreases with the increase of wavelength. The above results can provide reliable guidance for its experimental application in optoelectronics.
文章引用:刘洪飞, 王娜, 张众维. 钙钛矿CH3NH3PbBr3电子结构和光吸收特性的第一性原理研究[J]. 材料科学, 2017, 7(1): 64-71. http://dx.doi.org/10.12677/MS.2017.71009

参考文献

[1] Service, R.F. (2014) Perovskite Solar Cells Keep on Surging. Science, 344, 458. https://doi.org/10.1126/science.344.6183.458
[2] Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S. and Sum, T.C. (2013) Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342, 344-347. https://doi.org/10.1126/science.1243167
[3] Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051. https://doi.org/10.1021/ja809598r
[4] Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N. and Snaith, H.J. (2012) Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338, 643-647. https://doi.org/10.1126/science.1228604
[5] Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.S., Chang, J.A., Lee, Y.H., Kim, H.J., Sarkar, A. and Gratzel, M. (2013) Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nature Photonics, 7, 486-491. https://doi.org/10.1038/nphoton.2013.80
[6] Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N. and Seok, S.I. (2013) Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13, 1764-1769. https://doi.org/10.1021/nl400349b
[7] Stoumpos, C.C., Malliakas, C.D. and Kanatzidis, M.G. (2013) Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry, 52, 9019-9038. https://doi.org/10.1021/ic401215x
[8] Im, J.H., Lee, C.R., Lee, J.W., Park, S.W. and Park, N.G. (2011) 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 3, 4088-4093. https://doi.org/10.1039/c1nr10867k
[9] Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Mar-Chioro, A., Moon, S.J., Baker, R.H., Yum, J.H., Moser, J.E., Grätzel, M. and Park, N.G. (2012) Lead Iodide Perovskite Sensitized All-Aolid-Statesubmicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci-entific Reports, 2, 591. https://doi.org/10.1038/srep00591
[10] Burschka, J., Pellet, N., Moon, S.J., Baker, R.H., Gao, P., Nazeeruddin, M.K. and Grätzel, M. (2013) Sequential Deposition as a Route to High-Performance Perov-skite-Sensitized Solar Cells. Nature, 499, 316-319. https://doi.org/10.1038/nature12340
[11] Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Hetero-junction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398. https://doi.org/10.1038/nature12509
[12] Zhou, H.P., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z.R., You, J.B., Liu, Y.S. and Yang, Y. (2014) Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 345, 542-546. https://doi.org/10.1126/science.1254050
[13] Yi, C.Y., Li, X., Luo, J.S., Zakeeruddin, S.M. and Gratzel, M. (2016) Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films. Advanced Materials, 28, 2964-2970. https://doi.org/10.1002/adma.201506049
[14] Shi, J.J., Dong, J., Lv, S.T., Xu, Y.Z., Zhu, L.F., Xiao, J.Y., Xu, X., Wu, H.J., Li, D.M., Luo, Y.H. and Meng, Q.B. (2014) Hole-Conductor-Free Perovskite Organic Lead Iodide Heterojunction Thin-Film Solar Cells: High Efficiency and Junction Property. Applied Physics Letters, 104, Article ID: 063901. https://doi.org/10.1063/1.4864638
[15] Green, M.A., Baillie, A.H. and Snaith, H.J. (2014) Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics, 8, 133-138.
[16] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561. https://doi.org/10.1103/PhysRevB.47.558
[17] Kresse, G. and Hafner, J. (1994) Ab Initio Molecular-Dynamics Simu-lation of the Liquid-Metal-Amorphous-Semi- conductor Transition in Germanium. Physical Review B, 49, 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
[18] Kresse, G. and Furthmuller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
[19] Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775. https://doi.org/10.1103/PhysRevB.59.1758
[20] Wang, Y., Gould, T., Dobson, J.F., Zhang, H.M., Yang, H.G., Yao, X.D. and Zhao, H.J. (2014) Density Functional Theory Analysis of Structural and Electronic Properties of Orthorhombic Perovskite CH3NH3PbI3. Physical Chemistry Chemical Physics, 16, 1424-1429. https://doi.org/10.1039/C3CP54479F
[21] Dion, M., Rydberg, H., Schroder, E., Langreth, D.C. and Lundqvist, B.I. (2004) Van der Waals Density Functional for General Geometries. Physical Review Letters, 92, Article ID: 246401. https://doi.org/10.1103/physrevlett.92.246401
[22] Sun, J., Wang, H.T., He, J.L. and Tian, Y.J. (2005) Ab Initio Inves-tigations of Optical Properties of the High-Pressure Phases of ZnO. Physical Review B, 71, Article ID: 125132. https://doi.org/10.1103/PhysRevB.71.125132
[23] Baikie, T., Fang, Y.N., Kadro, J.M., Schreyer, M., Wei, F.X., Mhaisalkar, S.G., Graetzel, M. and White, T.J. (2013) Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications. Journal of Materials Chemistry A, 1, 5628-5641. https://doi.org/10.1039/c3ta10518k
[24] Mashiyama, H. and Kawamura, Y. (2007) The Anti-Polar Structure of CH3NH3PbBr3. Journal of the Korean Physical Society, 51, 850-853. https://doi.org/10.3938/jkps.51.850
[25] Feng, J. and Xiao, B. (2014) Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X=I and Br) Phases Predicted from HSE06. The Journal of Physical Chemistry Letters, 5, 1278-1282. https://doi.org/10.1021/jz500480m
[26] Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K. and Miura N. (2003) Comparative Study on the Excitons in Lead-Halide-Based Perovskite-Type Crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, 127, 619-623. https://doi.org/10.1016/S0038-1098(03)00566-0
[27] Mosconi, E., Amat, A., Nazeeruddin, M.K., Gratzel, M. and De Angelis, F. (2013) First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117, 13902- 13913. https://doi.org/10.1021/jp4048659
[28] Lv, H.Z., Gao, H.W., Yang, Y. and Liu, L.K. (2011) Density Functional Theory (DFT) Investigation on the Structure and Electronic Properties of the Cubic Perovskite PbTiO3. Applied Catalysis A: General, 404, 54-58. https://doi.org/10.1016/j.apcata.2011.07.010
[29] Karazhanov, S.Z., Ravindran, P., Kjekshus, A., Fjellvåg, H. and Svensson, B.G. (2007) Electronic Structure and Optical Properties of ZnX (X=O, S, Se, Te): A Density Functional Study. Physical Review B, 75, Article ID: 155104. https://doi.org/10.1103/PhysRevB.75.155104
[30] Ishihara, T. (1994) Optical Properties of PbI-Based Perovskite Structures. Journal of Luminescence, 60-61, 269-274. https://doi.org/10.1016/0022-2313(94)90145-7