反钙钛矿结构镍基氮化物的研究进展
Progress on the Studies of Antiperovskite Structure Nickel-Based Nitrides
DOI: 10.12677/MP.2017.71001, PDF, HTML, XML, 下载: 2,173  浏览: 5,208  科研立项经费支持
作者: 张 敏, 宋婷婷:物理与空间科学学院,西华师范大学,四川 南充
关键词: 反钙钛矿化合物超导镍基氮化物Anti-Perovskite Compound Superconductivity Nickel-Based Nitrides
摘要: 反钙钛矿结构化合物的晶格结构与高温铜氧化物超导体中的钙钛矿结构单元相似,这类材料蕴含了丰富的物性,在超导、巨磁阻等领域有广阔的应用潜力。本文详细的介绍了反钙钛矿结构镍基氮化物的制备方法;总结了各项物理性质。
Abstract: The crystal structure of anti-perovskite compounds is similar to the perovskite compounds structure unit of high temperature copper oxide superconductors. They have potential application in high temperature superconductivity and giant magnetoresistance due to their multiple physical properties. The preparation method of antiperovskite structure nickel-based nitrides was reviewed in this paper, and the various physical properties were summarized.
文章引用:张敏, 宋婷婷. 反钙钛矿结构镍基氮化物的研究进展[J]. 现代物理, 2017, 7(1): 1-7. http://dx.doi.org/10.12677/MP.2017.71001

参考文献

[1] 童鹏. 反钙钛矿结构镍基化合物研究[D]: [博士学位论文]. 合肥: 中国科学院研究生院(合肥物质科学研究院), 2007.
[2] 刘光华. 稀土材料与应用技术[M]. 北京: 化学工业出版社, 2005.
[3] Kim, W.S., Chi, E.O, Kim, J.C., et al. (2001) Close Correlation among Lattice, Spin, and Charge in the Manganese-Based Antiperovskite Material. Solid State Communications, 119, 507-510. https://doi.org/10.1016/S0038-1098(01)00279-4
[4] Shein, I.R. and Ivanovskii, A.L. (2008) Electronic and Elastic Properties of Non-Oxide Anti-Perovskites from First Principles: Superconducting CdCNi3 in Comparison with Magnetic In CNi3. Physical Review B, 77, 104101. https://doi.org/10.1103/PhysRevB.77.104101
[5] Takenaka, K. and Takagi, H. (2005) Giant Negative Thermal Expansion in Ge-Doped Anti-Perovskite Manganese Nitrides. Applied Physics Letters, 87, 1902. https://doi.org/10.1063/1.2147726
[6] Chi, E.O., Kim, W.S. and Hur, N.H. (2001) Nearly Zero Temperature Coefficient of Resistivity in Antiperovskite Compound CuNMn3. Solid State Communications, 120, 307-310. https://doi.org/10.1016/S0038-1098(01)00395-7
[7] He, T., Huang, Q., Ramirez, A.P., et al. (2001) Superconductivity in the Non-Oxide Perovskite MgCNi3. Nature, 411, 54-56. https://doi.org/10.1038/35075014
[8] Uehara, M., Uehara, A., Kozawa, K., et al. (2009) New Anti-Perovskite-Type Superconductor ZnNyNi3. Journal of the Physical Society of Japan, 78, No. 3.
[9] Ohishi, K., Ito, T.U., Higemoto, W., et al. (2010) Quasiparticle Excitations in Newly Discovered Antiperovskite Superconductor ZnNNi3. Physica C Superconductivity, 470, S705-S706.
[10] Shein, I.R., Bannikov, V.V. and Ivanovskii, A.L. (2008) Electronic and Elastic Properties of New Nitrogen-Containing Perovskite-Like Superconductor ZnNNi3.
[11] Okoye, C.M.I. (2010) Structural, Elastic and Electronic Properties of New Antiperovskite-Type Superconductor ZnNNi3 from First-Principles. Physica B: Condensed Matter, 405, 1562-1570.
[12] Xu, Y., Gao, F., Hao, X., et al. (2010) Electronic Structure and Magnetism in Superconductor ZnNNi3: A Comparative Study with ZnCNi3 and ZnNi3. Computational Materials Science, 50, 737-741. https://doi.org/10.1016/j.commatsci.2010.10.004
[13] Shein, I.R., Bannikov, V.V. and Ivanovskii, A.L. (2010) Elastic and Electronic Properties of the New Perovskite-Like Superconductor ZnNNi3, in Comparison with MgCNi3. Physica Status Solidi, 247, 72-76. https://doi.org/10.1002/pssb.200945216
[14] Bannikov, V.V., Shein, I.R. and Ivanovskii, A.L. (2010) Elastic Properties of Antiperovskite-Type Ni-Rich Nitrides MNNi3, (M=Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as Predicted from First-Principles Calculations. Physica B: Condensed Matter, 405, 4615-4619.
[15] Li, C., Chen, W.G., Wang, F., et al. (2009) First-Principles Investigation of Mechanical and Electronic Properties of MNNi3 (M=Zn, Mg, or Cd). Journal of Applied Physics, 105, No. 12. https://doi.org/10.1063/1.3156641
[16] Uehara, M., Uehara, A., Kozawa, K., et al. (2010) New Antiperovskite Superconductor ZnNNi3, and Related Compounds CdNNi3, and InNNi3. Physica C Superconductivity, 470, S688-S690. https://doi.org/10.1016/j.physc.2009.11.131
[17] Cao, W.H., He, B., Liao, C.Z., et al. (2010) Preparation and Properties of Antiperovskite-Type Nitrides: InNNi3, and InNCo3. ChemInform, 182, 3353-3357.
[18] Hou, Z.F. (2010) Elastic Properties and Electronic Structures of Antiperovskite-Type InNCo3, and InNNi3. Solid State Communications, 150, 1874-1879. https://doi.org/10.1016/j.ssc.2010.07.047
[19] Singer, P.M., Imai, T., He, T., et al. (2010) C13, NMR Investigation of the Super-conductor MgCNi3, up to 800 K. Physical Review Letters, 87, 257601. https://doi.org/10.1103/PhysRevLett.87.257601
[20] Bannikov, V.V., Shein, I.R. and Ivanovskii, A.L. (2010) Structural, Elastic and Electronic Properties of New Antiperovskite-Like Ternary Nitrides AlNNi3, GaNNi3, and InNNi3, as Predicted from First Principles. Computational Materials Science, 49, 457-461. https://doi.org/10.1016/j.commatsci.2010.05.036