由钛铁矿合成磁性氧化钛纳米片基光催化剂
Magnetically Separable Titania Nanosheets Based Photocatalyst from Ilmenite
DOI: 10.12677/MS.2017.71012, PDF, HTML, XML, 下载: 1,867  浏览: 3,177  科研立项经费支持
作者: 薛 怡, 焦雅洁, 姚日立, 何倩瑜, 董晓平:浙江理工大学化学系,浙江 杭州
关键词: 可磁回收Fe3O4@SiO2@TNSs二维纳米片可见光催化Magnetic Recycling Fe3O4@SiO2@TNSs Two-Dimensional Nanosheets Visible Light Photocatalysis
摘要: 以钛铁矿为原料,通过浓盐酸浸出法提取了其中的氧化钛和氧化铁,浸出率高达~97%,氧化钛和氧化铁的收率分别为~53%和~80%。并以氧化铁为原料合成了Fe3O4@SiO2磁核,通过固相合成及软化学剥离制备了二维氧化钛纳米片(TNSs)溶胶,并进一步制备了可磁分离的Fe3O4@SiO2@TNSs复合材料。以可见光或太阳光为光源,催化剂在H2O2辅助下表现出优异的活性,其降解RhB的速率常数分别是商品氧化钛P25以及Fe3O4/N-TiO2光催化剂的14.5倍和20.4倍。此外,相比于P25纳米氧化钛的难以回收,合成的Fe3O4@SiO2@TNSs催化剂在外磁场作用下实现快速回收。催化剂表现出极佳的稳定性和循环性,五次重复使用后仍能几乎完全降解有机污染物。
Abstract: TiO2 and Fe2O3 were extracted from ilmenite using a HCl treating method, in which the conversion ratio of ilmenite was ~97% and the yields of TiO2 and Fe2O3 were respectively ~ 53% and ~80%. With the prepared Fe2O3 as the precursor, we synthesized the magnetic core of Fe3O4@SiO2, and fur-ther fabricated the magnetically separable Fe3O4@SiO2@ titania nanosheets (TNSs) composite by using the two-dimensional TNSs from the solid reaction and the followed soft-chemistry exfoliation. This composite exhibited superior photocatalytic performance with the H2O2 assistance under visible light or sun light irradiation, and its rate constant for degradation of Rhodamine B was respectively 14.5 and 20.4 times higher than those of Degussa P25 TiO2 and Fe3O4/N-TiO2 samples. Moreover, in comparison to the recycling difficulty of P25 TiO2, the prepared Fe3O4@SiO2@TNSs composite could be easily recovered by the external magnet. This composite also exhibited the excellent stability and reusability, and after 5 successive cycles the dye molecules still could be decomposed.
文章引用:薛怡, 焦雅洁, 姚日立, 何倩瑜, 董晓平. 由钛铁矿合成磁性氧化钛纳米片基光催化剂[J]. 材料科学, 2017, 7(1): 88-98. http://dx.doi.org/10.12677/MS.2017.71012

参考文献

[1] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0
[2] Nakata, K. and Fujishima, A. (2012) TiO2 Photocatalysis: Design and Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189.
[3] Kisch, H. (2013) Semiconductor Photocataly-sis—Mechanistic and Synthetic Aspects. Angewandte Chemie International Edition, 52, 812-847. https://doi.org/10.1002/anie.201201200
[4] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. and Bahnemann, D.W. (2014) Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114, 9919-9986. https://doi.org/10.1021/cr5001892
[5] Beydoun, D., Amal, R., Low, G.K.C. and McEvoy, S. (2000) Novel Photocatalyst:  Tita-nia-Coated Magnetite. Activity and Photodissolution. The Journal of Physical Chemistry B, 104, 4387-4396. https://doi.org/10.1021/jp992088c
[6] Lucasa, M.S., Tavaresa, P.B., Peresa, J.A., Fariab, J.L., Rochac, M., Pereirac, C. and Freirec, C. (2013) Photocatalytic Degradation of Reactive Black 5 with TiO2-Coated Magnetic Nanoparticles. Catalysis Today, 209, 116-121. https://doi.org/10.1016/j.cattod.2012.10.024
[7] Chen, F., Xie, Y., Zhao, J. and Lu, G. (2001) Photocatalytic Degradation of Dyes on a Magnetically Separated Photocatalyst under Visible and UV Irradiation. Chemosphere, 44, 1159-1168. https://doi.org/10.1016/S0045-6535(00)00277-0
[8] Ye, M., Zhang, Q., Hu, Y., Gre, J., Lu, Z., He, L., Chen, Z. and Yin, Y. (2010) Magnetically Recoverable Core-Shell Nanocomposites with Enhanced Photocatalytic Activity. Chemistry, 16, 6243-6250. https://doi.org/10.1002/chem.200903516
[9] Li, X., Liu, D., Song, S. and Zhang, H. (2014) Fe3O4@SiO2@TiO2@Pt Hierarchical Core-Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle. Crystal Growth & Design, 14, 5506-5511. https://doi.org/10.1021/cg501164c
[10] Wang, L. and Sasaki, T. (2014) Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities. Chemical Reviews, 114, 9455-9486. https://doi.org/10.1021/cr400627u
[11] Kim, Y., Jo, Y.K., Lee, J.M., Wang, L. and Hwang, S.J. (2014) Unique Advantages of Exfo-liated 2D Nanosheets for Tailoring the Functionalities of Nanocomposites. The Journal of Physical Chemistry Letters, 5, 4149-4161. https://doi.org/10.1021/jz502038g
[12] Luo, B., Liu, G. and Wang, L. (2016) Recent Advances in 2D Materials for Photocatalysis. Nanoscale, 8, 6904-6920. https://doi.org/10.1039/C6NR00546B
[13] Fu, J., Li, G., Xi, F. and Dong, X. (2012) Hybrid Nanocomposite with Visible-Light Photocatalytic Activity: CdS-Pillared Titanate. Chemical Engineering Journal, 180, 330-336. https://doi.org/10.1016/j.cej.2011.10.098
[14] Fu, J., Tian, Y., Chang, B., Li, G., Xi, F. and Dong, X. (2012) Synthesis of Mn-Intercalated Layered Titanate by Exfoliation-Flocculation Approach and Its Efficient Photocatalytic Activity under Visible-Light. Journal of Solid State Chemistry, 196, 282-287. https://doi.org/10.1016/j.jssc.2012.06.033
[15] Tian, Y., Fu, J., Chang, B., Xi, F. and Dong, X. (2012) Synthesis of Mesoporous CdS/Titania Composites with Visible Light Photocatalytic Activities. Materials Letters, 81, 95-98. https://doi.org/10.1016/j.matlet.2012.04.091
[16] Cornish, B.J.P.A., Lawton, L.A. and Robertson, P.K.J. (2000) Hydrogen Peroxide Enhanced Photocatalytic Oxidation of Microcystin-LR Using Titanium Dioxide. Applied Catalysis B: Environmental, 25, 59-67. https://doi.org/10.1016/S0926-3373(99)00121-6
[17] Auguliaro, V., Davi, E., Palmisano, L., Schiavello, M. and Sclafani, A. (1990) Influence of Hydrogen Peroxide on the Kinetics of Phenol Photodegradation in Aqueous Titanium Dioxide Dispersion. Applied Ca-talysis, 65, 101-116. https://doi.org/10.1016/S0166-9834(00)81591-2
[18] Li, X., Chen, C. and Zhao, J. (2001) Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation. Langmuir, 17, 4118-4122. https://doi.org/10.1021/la010035s
[19] Ohno, T., Masaki, Y., Hirayama, S. and Matsumura, M. (2001) TiO2-Photocatalyzed Epoxidation of 1-Decene by H2O2 under Visible Light. Journal of Catalysis, 204, 163-168. https://doi.org/10.1006/jcat.2001.3384
[20] Luo, J., Chen, Q. and Dong, X. (2015) Prominently Photocatalytic Performance of Restacked Titanate Nanosheets Associated with H2O2 under Visible Light Irradiation. Powder Tech-nology, 275, 284-289. https://doi.org/10.1016/j.powtec.2015.02.007
[21] 张茜芸, 仲兆平, 姚杰, 等. 由钛铁矿制备SCR催化剂载体TiO2的优化试验[J]. 钢铁钒钛, 2014, 35(2): 26-30.
[22] Deng, Y., Qi, D., Deng, C., Zhang, X. and Zhao, D. (2008) Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society, 130, 28-29. https://doi.org/10.1021/ja0777584
[23] Fu, J., Tian, Y., Chang, B., Xi, F. and Dong, X. (2013) Facile Fabrication of N-Doped TiO2 Nanocatalyst with Superior Performance under Visible Light Irradiation. Journal of Solid State Chemistry, 199, 280-286. https://doi.org/10.1016/j.jssc.2012.12.020
[24] Sasaki, T., Kooli, F., Iida, M., Michiue, Y., Takenouchi, S., Yajima, Y., Izumi, F., Chakoumakos, B.C. and Watanabe, M. (1998) A Mixed Alkali Metal Titanate with the Lepidocrocite-Like Layered Structure. Prepa-ration, Crystal Structure, Protonic Form, and Acid-Base Intercalation Properties. Chemistry of Materials, 10, 4123-4128. https://doi.org/10.1021/cm980535f