化学气相沉积法制备MoS2的研究进展
Research Progress on MoS2 Prepared by Chemical Vapor Deposition
DOI: 10.12677/AMC.2017.51001, PDF, HTML, XML, 下载: 2,576  浏览: 6,309  科研立项经费支持
作者: 王 洁, 陈秋月, 张永平*:西南大学材料与能源学部,重庆
关键词: 过渡族金属硫化物MoS2化学气相沉积纳米材料Transition-Metal Dichalcogenides MoS2 Chemical Vapor Deposition Nanostructured Materials
摘要: 二维纳米结构的过渡族金属硫化物MoS2有着不同寻常的物理化学性质,在光电性能、可见光催化、润滑性和摩擦性方面有着广泛的应用价值。制备纳米结构MoS2有物理的和化学的方法,其中化学气相沉积是一种简便实用的生长大面积高质量MoS2的方法。本文详细讨论了化学气相沉积过程中反应时间、载气体流速、先驱体化学计量比和基体放置位置等因素对MoS2结构的影响。不同结构的MoS2其性质有决定性的影响,使得这种层状二维材料获得广泛的应用。
Abstract: Nanostructured MoS2, a two dimensional transition-metal dichalcogenides, has found extensive application in phtotoelectricity, visible light catalysts, lubricity and friction performance because of its unusual physical and chemical properties. Chemical vapor deposition is one of the most practical methods to prepare the large area and high quality MoS2 among all the physical or chemical methods. This paper reviews the effect of the reaction time, carrier gas flow rate, stoichiometric ratio of precursors and substrate position on the morphology and structure of MoS2. Two- dimensional layered MoS2 may find optimal utilizations since its property varies significantly with different structures.
文章引用:王洁, 陈秋月, 张永平. 化学气相沉积法制备MoS2的研究进展[J]. 材料化学前沿, 2017, 5(1): 1-10. http://dx.doi.org/10.12677/AMC.2017.51001

参考文献

[1] Remskar, M., Mrzel, A., Skraba, Z., et al. (2001) Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes. Science, 292, 479-481.
https://doi.org/10.1126/science.1059011
[2] Remskar, M. (2004) Inorganic Nanotubes. Advanced Materials, 16, 1497-1504.
https://doi.org/10.1002/adma.200306428
[3] Nath, M., Govindaraj, A. and Rao, C.N.R. (2001) Simple Synthesis of MoS2 and WS2 Nanotubes. Advanced Materials, 13, 283-286.
https://doi.org/10.1002/1521-4095(200102)13:4<283::AID-ADMA283>3.0.CO;2-H
[4] Rao, C.N.R. and Nath, M. (2003) Inorganic Nanotubes. Dalton Transactions, 2003, 1-24.
https://doi.org/10.1039/b208990b
[5] Enyashin, A.N., Gemming, S., Bar-Sadan, M., et al. (2007) Structure and Stability of Molybdenum Sulfide Fullerenes. Angewandte Chemie International Edition, 46, 623-627.
https://doi.org/10.1002/anie.200602136
[6] Tian, Y., He, Y. and Zhu, Y. (2004) Low Temperature Synthesis and Characterization of Molybdenum Disulfide Nanotubes and Nanorods. Materials Chemistry and Physics, 87, 87-90.
https://doi.org/10.1016/j.matchemphys.2004.05.010
[7] Han, S., Yuan, C., Luo, X., et al. (2015) Horizontal Growth of MoS2 Namowires by Chemical Vapour Deposition. RSC Advances, 5, 68283.
https://doi.org/10.1039/C5RA13733K
[8] Cheng, Y., Yao, K., Yang, Y., et al. (2013) Van der Waals Epitaxial Growth of MoS2 on SiO2/Si by Chemical Vapor Deposition. RSC Advances, 3, 17287-17293.
https://doi.org/10.1039/c3ra42171f
[9] Cao, Y., Luo, X., Han, S., et al. (2015) Influences of Carrier Gas Flow Rate on the Morphologies of MoS2 Flakes. Chemical Physics Letters, 631, 30-33.
https://doi.org/10.1016/j.cplett.2015.05.001
[10] Radisavljevic, B., Radenovic, A., Brivio, J., et al. (2011) Single-Layer MoS2 Transistors. Nature Nanotechnology, 6, 147-150.
https://doi.org/10.1038/nnano.2010.279
[11] Mak, K.F., Lee, C., Hone, J., Shan, J. and Heinz, T. (2010) Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 105, Article ID: 136805.
https://doi.org/10.1103/PhysRevLett.105.136805
[12] Splendiani, A., Sun, L., Zhang, Y., et al. (2010) Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 10, 1271-1275.
https://doi.org/10.1021/nl903868w
[13] Eda, G., Yamaguchi, H., Voiry, D., et al. (2011) Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 11, 5111-5116.
https://doi.org/10.1021/nl201874w
[14] Radisavljevic, B., Whitwick, M.B. and Kis, A. (2011) Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano, 5, 9934-9938.
https://doi.org/10.1021/nn203715c
[15] Yin, Z., Li, H., Li, H., et al. (2011) Single-Layer MoS2 Phototransistors. ACS Nano, 6, 74-80.
https://doi.org/10.1021/nn2024557
[16] He, Q., Zeng, Z., Yin, Z., et al. (2012) Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications. Small, 8, 2994-2999.
https://doi.org/10.1002/smll.201201224
[17] Liu, J., Zeng, Z., Cao, X., et al. (2012) Preparation of MoS2-Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 8, 3517-3522.
https://doi.org/10.1002/smll.201200999
[18] Wang, H., Yu, L., Lee, Y.H., et al. (2012) Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Letters, 12, 4674-4680.
https://doi.org/10.1021/nl302015v
[19] Pu, J., Yomogida, Y., Liu, K.K., et al. (2012) Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics. Nano Letters, 12, 4013-4017.
https://doi.org/10.1021/nl301335q
[20] Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N. and Strano, M.S. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology, 7, 699-712.
https://doi.org/10.1038/nnano.2012.193
[21] Zhang, Z.J., Zhang, J. and Xue, Q.J. (1994) Synthesis and Characterization of a Molybdenum Disulfide Nanocluster. The Journal of Physical Chemistry, 98, 12973-12977.
https://doi.org/10.1021/j100100a027
[22] Benavente, E., Santa, M.A., Mendizabal, F. and González, G. (2002) Intercalation Chemistry of Molybdenum Disulfide. Coordination Chemistry Reviews, 224, 87-109.
https://doi.org/10.1016/S0010-8545(01)00392-7
[23] Coleman, J.N., Lotya, M., Oneill, A., et al. (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331, 568-571.
https://doi.org/10.1126/science.1194975
[24] Huang, X., Zeng, Z. and Zhang, H. (2013) Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. Chemical Society Reviews, 42, 1934-1946.
https://doi.org/10.1039/c2cs35387c
[25] Fleischauer, P.D., Lince, J.R., Bertrand, P.A. and Bauer, R. (1989) Electronic Structure and Lubrication Properties of Molybdenum Disulfide: A Qualitative Molecular Orbital Approach. Langmuir, 5, 1009-1015.
https://doi.org/10.1021/la00088a022
[26] 王轩, 宋礼, 陈露, 宋欢欢, 张永平. 二硫化钼纳米片的研究进展[J]. 材料化学前沿, 2014, 2(4): 49-62.
[27] Smorygo, O., Vomnin, S., Bertrand, P. and Smurov, I. (2004) Fabrication of Thick Molybdenum Disulphide Coatings by Thermal-Diffusion Synthesis. Tribology Letters, 17, 723-726.
https://doi.org/10.1007/s11249-004-8079-8
[28] Wang, H., Xu, B., Liu, J. and Zhuang, D. (2005) Microstructures and Tribological Pmperties on the Composite MoS2 Films Prepared by a Novel Two-Step Method. Materials Chemistry and Physics, 91, 494-499.
https://doi.org/10.1016/j.matchemphys.2004.12.039
[29] Benameur, M.M., Radisavljevic, B., Heron, J.S., Sahoo, S., Berger, H. and Kis, A. (2011) Visibility of Dichalcogenide Nanolayers. Nanotechnology, 22, Article ID: 125706.
https://doi.org/10.1088/0957-4484/22/12/125706
[30] Wang, J., Lauwerens, W., Wieers, E., Stals, L.M., He, J. and Celis, J.P. (2001) Structure and Tribological Properties of MoSx Coatings Prepared by Bipolar DC Magnetron Sputtering. Surface and Coatings Technology, 139, 143-152.
https://doi.org/10.1016/S0257-8972(01)00988-4
[31] Sen, R., Govindaraj, A., Suenaga, K., et al. (2001) Encapsulated and Hollow Closed-Cage Structures of WS2 and MoS2 Prepared by Laser Ablation at 450-1050˚C. Chemical Physics Letters, 340, 242-248.
https://doi.org/10.1016/S0009-2614(01)00419-5
[32] Chhowalla, M. and Amaratunga, G.A.J. (2000) Thin Films of Full-erenc-Like MoS2 Nanoparticles with Ultra-Low Friction and Wear. Nature, 40, 164-167.
https://doi.org/10.1038/35025020
[33] Zhang, S.L., Choi, H.H., Yue, H. and Yang, W. (2014) Controlled Exfoliation of Molybdenum Disulfide for Developing Thin Film Humidity Sensor. Current Applied Physics, 14, 264-268.
https://doi.org/10.1016/j.cap.2013.11.031
[34] Hwang, H., Kim, H. and Cho, J. (2011) MoS2 Nanoplates Consisting of Disordered Graphene-Like Layers for High Rate Lithium Battery Anode Materials. Nano Letters, 11, 4826-4830.
https://doi.org/10.1021/nl202675f
[35] Wang, X., Ding, J., Yao, S., et al. (2014) High Supercapacitor and Adsorption Behaviors of Flower-Like MoS2 Nanostructures. Journal of Materials Chemistry A, 2, 15958-15963.
https://doi.org/10.1039/C4TA03044C
[36] Bezverkhy, I., Afanasiev, P. and Lacroix, M. (2000) Aqueous Preparation of Highly Dispersed Molybdenum Sulfide. Inorganic Chemistry, 39, 5416-5417.
https://doi.org/10.1021/ic000627i
[37] Bezverkhy, I., Afanasiev, P. and Lacroix, M. (2005) Promotion of Highly Loaded MoS2/Al2O3 Hydrodesulfurization Catalysts Prepared in Aqueous Solution. Journal of Catalysis, 230, 133-139.
https://doi.org/10.1016/j.jcat.2004.12.009
[38] Afanasiev, P., Geantet, C., Thomazeau, C. and Jouget, B. (2000) Molybdenum Polysulfide Hollow Microtubules Grown at Room Temperature from Solution. Chemical Communications, 2000, 1001-1002.
https://doi.org/10.1039/b001406k
[39] Afanasiev, P. and Bezverkhy, I. (2003) Genesis of Vesicle-Like and Tubular Morphologies in Inorganic Precipitates: Amorphous Mo Oxysulfides. The Journal of Physical Chemistry B, 107, 2678-2683.
https://doi.org/10.1021/jp021655k
[40] Muijsers, J.C., Weber, T., Vanhardeveld, R.M., Zandbergen, H.W. and Niemantsverdriet, J.W. (1995) Sulfidation Study of Molybdenum Oxide Using MoO3/SiO2/Si (100) Model Catalysts and Mo-IV 3-Sulfur Cluster Compounds. Journal of Catalysis, 157, 698-705.
https://doi.org/10.1006/jcat.1995.1335
[41] Wang, X. and Zhang, Y. (2016) Tuning the Structure of MoO3 Nanoplates via MoS2 Oxidation. Philosophical Magazine Letters, 96, 347-354.
https://doi.org/10.1080/09500839.2016.1223366
[42] Wang, X., Zhang, Y.P. and Chen, Z.Q. (2016) Effect of MoO3 Constituents on the Growth of MoS2 Nanosheets by Chemical Vapor Deposition. Materials Research Express, 3, Article ID: 065014.
[43] Wang, X., Zhang, Y.P. and Chen, Z.Q. (2016) Morphological Evolution of MoS2 Nanosheets by Chemical Vapor Deposition. Chalcogenide Letters, 13, 351-357.
[44] Cao, Y., Luo, X., Yuan, C., et al. (2015) Morphology Engineering of Monolayer MoS2 by Adjusting Chemical Environment during Growth. Physica E: Low-Dimensional Systems and Nanostructures, 74, 292-296.
https://doi.org/10.1016/j.physe.2015.07.017
[45] Han, S., Luo, X., Cao, Y., et al. (2015) Morphology Evolution of MoS2 Nanorods Grown by Chemical Vapor Deposition. Journal of Crystal Growth, 430, 1-6.
https://doi.org/10.1016/j.jcrysgro.2015.08.005
[46] Smith, R.J., King, P.J., Lotya, M., et al. (2011) Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Maters, 23, 3944-3948.
https://doi.org/10.1002/adma.201102584
[47] Lee, H.S., Min, S.W., Chang, Y.G., et al. (2012) MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Letters, 12, 3695-3700.
https://doi.org/10.1021/nl301485q
[48] Yang, H., Huang, C., Li, X., Shi, R. and Zhang, K. (2005) Luminescent and Photocatalytic Properties of Cadmium Sulfide Nanoparticles Synthesized via Microwave Irradiation. Materials Chemistry and Physics, 90, 155-158.
https://doi.org/10.1016/j.matchemphys.2004.10.028
[49] Payen, E., Hubaut, R., Kasztelan, S., Poulet, O. and Grimblot, J. (1994) Morphology Study of MoS2- and WS2-Based Hydrotreating Catalysts by High-Resolution Electron Microscopy. Journal of Catalysis, 147, 123-132.
https://doi.org/10.1006/jcat.1994.1122
[50] Miremadi, B.K. and Morrison, S.R. (1987) High Activity Catalyst from Exfoliated MoS2. Journal of Catalysis, 103, 334-345.
https://doi.org/10.1016/0021-9517(87)90125-4
[51] Cizaire, L., Vacher, B., Le Mogne, T., et al. (2002) Mechanisms of Ultra-Low Friction by Hollow Inorganic Fullerene-Like MoS2 Nanoparticles. Surface and Coatings Technology, 160, 282-287.
https://doi.org/10.1016/S0257-8972(02)00420-6
[52] Yu, L.G., Zhang, P.Y. and Du, Z.L. (2000) Tribological Behavior and Structural Change of the LB Film of MoS2 Nanoparticles Coated with Dialkyldithiophosphate. Surface Coatings Technology, 130, 110-115.
https://doi.org/10.1016/S0257-8972(00)00691-5
[53] Chen, Z., Liu, X., Liu, Y., Selda, G. and Luo, J. (2015) Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Science Reports, 5, Article Number: 12869.
[54] Hu, J.J., Bultman, J.E. and Zabinski, J.S. (2006) Microstructure and Lubrication Mechanism of Multilayered MoS2/ Sb2O3 Thin Films. Tribology Letters, 21, 169-174.
https://doi.org/10.1007/s11249-006-9035-6
[55] Rapoport, L., Nepomnyashchy, O., Verdyan, A., et al. (2004) Polymer Nanocomposites with Fullerene-Like Solid Lubricant. Advanced Engineering Materials, 6, 44-48.
https://doi.org/10.1002/adem.200300512
[56] Hu, K.H., Wang, J., Schraube, S., et al. (2007) Tribological Behavior of Self-Lubrication Bearing Materials of Steel- Copper-Polyoxymethylene Containing MoS2-IC Nanoparticles. ASME/STLE 2007 International Joint Tribology Conference, San Diego, 22-24 October 2007, 787-789.
https://doi.org/10.1115/IJTC2007-44132
[57] Wang, J., Hu, K.H., Xu, Y.F. and Hu, X.G. (2008) Structural, Thermal, and Tribological Properties of Intercalated Polyoxymethylene/Molybdenum Disulfide Nanocomposites. Journal of Applied Polymer Science, 110, 91-96.
https://doi.org/10.1002/app.28519
[58] Liu, W.M., Huang, C.X., Gao, L., Wang, J. and Dang, H. (1991) Study of the Friction and Wear Properties of MoS2-Filled Nylon 6. Wear, 151, 111-118.
https://doi.org/10.1016/0043-1648(91)90350-4