求解非线性算子方程的两步组合方法的收敛性分析
Convergence Analysis of the Two-Step Combined Method for Solving Nonlinear Operator Equations
DOI: 10.12677/AAM.2017.61011, PDF, HTML, XML, 下载: 1,660  浏览: 4,252  科研立项经费支持
作者: 吴伟笛, 沈卫平, 徐丽华:浙江师范大学数学系,浙江 金华
关键词: 半局部收敛性两步组合方法差商Semi-Local Convergence Two-Step Combined Method Divided Differences
摘要: 本文考虑求解非线性方程问题的两步组合方法的收敛性。在某些连续性条件下,我们给出了该方法的半局部收敛性。另外对算子方程的解的唯一性也做出了说明。最后通过数值例子来说明收敛性分析的有效性。
Abstract: In this paper, we consider the convergence of the two-step combined method for solving nonlinear operator equations. A semi-local convergence of the method is presented under some continuity conditions. Moreover, we establish the uniqueness result of the solutions. Finally, a numerical example is provided to demonstrate our theoretical results.
文章引用:吴伟笛, 沈卫平, 徐丽华. 求解非线性算子方程的两步组合方法的收敛性分析[J]. 应用数学进展, 2017, 6(1): 90-103. http://dx.doi.org/10.12677/AAM.2017.61011

参考文献

[1] Kantorovich, L.V. and Akilov, G.P. (1982) Functional Analysis. Pergamon, Oxford.
[2] Ortega, J.M., Rheinboldt, W.C. (1970) Iterative Solution of Nonlinear Equations in Several Variable. Academic Press, New York.
[3] Ya, B.M. (1968) About One Iterative Method of Solving Functional Equations. Dopovidi Akademii Nauk Ukrains'koi RSR seriya A, 5, 387-391.
[4] Argyros, I.K. (2011) On the Semi-Local Convergence of Werner’s Method for Solving Equations Using Recurrent Functions. Punjab University journal of mathematics, 43, 19-28.
[5] Han, D. and Wang, X. (1998) Convergence of Deformed Newton Method. Applied Mathematics and Computation, 94, 65-72.
https://doi.org/10.1016/S0096-3003(97)10066-2
[6] King, R.F. (1972) Tangent Method for Nonlinear Equations. Numerische Mathematik, 18, 298-304.
https://doi.org/10.1007/BF01404680
[7] Laasonen, P. (1969) Einüberquadratisch konvergenter iterativer algorithmus. Annales Academia Scientiarum Fennica.series A, 450, 1-10.
[8] Werner, W. (1979) On an Order Method for Solving Nonlinear Equations. Numerische Mathematik, 32, 333-342.
https://doi.org/10.1007/BF01397005
[9] Kantorovich, L.V. and Akilov, G.P. (1984) Functional Analysis, Nauka, Moscow (in Russian).
[10] Argyros, I.K. (1991) On an Iterative Algorithm for Solving Nonlinear Operator Equations. Journal of Analysis and Its Applications, 10, 83-92.
https://doi.org/10.4171/ZAA/433
[11] Hernandez, M. and Rubio, M.J. (2001) The Secant Method and Divided Differences Hölder Continuous, Applied Mathematics and Computation, 124, 139-149.
https://doi.org/10.1016/S0096-3003(00)00079-5
[12] Shakhno, S.M. (2004) Application of Nonlinear Majoriants for Investigation of the Secant Method for Solving Nonlinear Equations. Matematychni Studii, 22, 79-86.
[13] Potra, F.A. (1984-1985) on an Iterative Algorithm of Order 1.839… for Solving Nonlinear Operator Equations. Numerical Functional Analysis and Optimization, 7, 75-106.
https://doi.org/10.1080/01630568508816182
[14] Shakhno, S.M. (2004) On a Kurchatov’s Method of Linear Interpolation for Solving Nonlinear Equations. Proceedings in Applied Mathematics and Mechanics, 4, 650-651.
https://doi.org/10.1002/pamm.200410306
[15] Bartish, M., Shcherbyna, Y. and Yu, M. (1972) About One Difference Method of Solving Operator Equations. Dopovidi Akademii Nauk Ukrains'koi RSR series A, 7, 579-582.
[16] Shakhno, S.M. (2009) On an Iterative Algorithm with Super-Quadratic Convergence of Solving Nonlinear Operator Equations. Journal of Computational and Applied Mathematics, 231, 222-235.
https://doi.org/10.1016/j.cam.2009.02.010
[17] Shakhno, S.M. and Yarmola, H. (2012) Two-Step Method for Solving Nonlinear Equations with Non-Differentiable Operator. Journal of Computational and Applied Mathematics, 109, 105-115.
[18] Shakhno, S.M. (2014) Convergence of the Two-Step Combined Method and Uniqueness of the Solution of Nonlinear Operator Equations. Journal of Computational and Applied Mathematics, 261, 378-386.
https://doi.org/10.1016/j.cam.2013.11.018
[19] 李庆杨, 莫孜中, 祁力群. 非线性方程组的数值解法[M]. 北京: 科学出版社, 1999.