基于分子间分裂式DNA酶和磁纳米颗粒的生物传感器用于Hg2+的比色检测
A Sensitive Colorimetric Biosensor Based on Intermolecular Split G-Quadruplex DNA Zymes and Magnetic Nanoparticles for the Detection of Hg2+
摘要: 本文设计了一种新的比色生物传感器检测Hg2+,主要是基于建立分子间的分裂式DNA酶,利用核酸序列中的胸腺嘧啶(T)能够特异性识别Hg2+,形成特殊的T-Hg-T结构。SA是一段富含T碱基组装到磁纳米颗粒表面寡聚核苷酸的片段(MNPs/SA)。SB和SC是两段分离的核酸序列,一端富含T碱基,用来与Hg2+形成T-Hg-T结构;另一端富含G碱基,用于组装G-四联体DNA酶。当体系中存在Hg2+时,SA、SB和SC上的T碱基与Hg2+结合形成T-Hg-T双链结构,SB和SC就组装到了磁颗粒上(MNPs/SA/SB/SC),此时SB和SC上两段富含G的片段相互靠近,在hemin的存在下,形成hemin嵌入式G-四分体DNA酶可催化H2O2氧化ABTS使其在421 nm处的特征吸收峰值升高。因此,可以通过比较特征吸收峰值来反映溶液中Hg2+的浓度变化情况,传感器对Hg2+的检出限为0.8 nM。100倍的其他金属离子和10,000倍的Cl-共存时都不干扰Hg2+的检测,说明该传感器对汞离子具有高的灵敏度和特异性。基于此,该比色生物传感器有望应用于饮用水和环境水中Hg2+的监测。
Abstract: In this paper, we report a novel and sensitive optical sensing protocol for the detection of mercury (II) ions based on colorimetry combined with intermolecular split G-quadruplex DNA zymes and the conjugation of thymine-Hg2+-thymine. A T-rich strand A was assembled onto the biomagnetic beads. Two other oligonucleotide strands (strands B and C) were employed, which are each composed of a capture segment (T-rich part) and a sensing segment (G-rich part). In the presence of Hg2+, the capture segments of both strands B and C can hybridise with biotin-strand A on magnetic beads to form the stable DNA duplexes through THg2+-T linkages. The formation of the DNA duplex brings the sensing segments of both strands B strand C close enough to constructed an intermolecular split G-quadruplex. This split G-quadruplex is able to effectively catalyse the H202- mediated oxidation of ABTS in the presence of hemin, generating the blue-green product ABTS+ and increasing the absorption signal at 421 nm. Therefore, the change in the absorption signal can be used to monitor the concentration of Hg2+ with the detection limit of 0.8 nM. The other metal ions is 100 times and chloride ion is 10,000 times of mercury ion have slight effects on the UV-Vis absorption of the sensing system, indicating that the sensing assay described herein exhibits a high specificity for Hg2+. The practical results obtained imply that the proposed colorimetric biosensor can be extended for the detection of trace Hg2+ in environmental water and drinking water.
文章引用:张维, 汤玉娇, 邵爽, 戴诗岩, 程圭芳, 何品刚, 方禹之. 基于分子间分裂式DNA酶和磁纳米颗粒的生物传感器用于Hg2+的比色检测[J]. 分析化学进展, 2017, 7(1): 21-30. https://doi.org/10.12677/AAC.2017.71004

参考文献

[1] Zhang, W., Wei, W., Hu, D., Zhu, Y. and Wang, X. (2013) Emission of Speciated Mercury from Residential Biomass Fuel Combustion in China. Energy Fuels, 27, 6792-6800. https://doi.org/10.1021/ef401564r
[2] Lavoie, R.A., Jardine, T.D., Chumchal, M.M., Kidd, K.A. and Campbell, L.M. (2013) Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 47, 13385-13394. https://doi.org/10.1021/es403103t
[3] Lin, Y., Vogt, R. and Larssen, T. (2012) Environmental Mercury in China: A Review. Envi-ronmental Toxicology and Chemistry, 31, 2431-2444.
[4] Bai, Y.F., Feng, F., Zhao, L., Chen, Z.Z., Wang, H.Y. and Duan, Y.L. (2014) A Label-Free Fluorescent Sensor for Hg2+ Based on Target-Induced Structure-Switching of G-Quadruplex. Analytical Methods, 6, 662-665. https://doi.org/10.1039/C3AY42023J
[5] Zhang, L., Zhang, Y.M., Liang, R.P. and Qiu, J.D. (2013) Colorimetric Logic Gates Based on Ion-Dependent DNAzymes. The Journal of Physical Chemistry C, 117, 12352-12357. https://doi.org/10.1021/jp4027892
[6] Sener, G., Uzun, L. and Denizli, A. (2014) Lysine-Promoted Colorimetric Response of Gold Nanoparticles: A Simple Assay for Ultrasensitive Mercury(II) Detection. Analytical Chemistry, 86, 514-520. https://doi.org/10.1021/ac403447a
[7] 张佳佳, 代佩卿, 李超, 程圭芳. 基于磁纳米颗粒的二段对称分裂式G-四分体DNA酶生物传感器用于Hg~(2+)的快速检测[J]. 化学学报, 2014, 72 (9): 1029-1035.
[8] Zhu, X., Gao, X.Y., Liu, Q.D., Lin, Z.Y., Qiu, B. and Chen, G.N. (2011) Pb2+-Introduced Activation of Horseradish Peroxidase (HRP)-Mimicking DNAzyme. Chemical Commu-nications, 47, 7437-7439. https://doi.org/10.1039/c1cc11349f
[9] Bi, S., Cui, Y.Y. and Li, L. (2013) Ultrasensitive Detection of mRNA Extracted from Can-cerous Cells Achieved by DNA Rotaxane-Based Cross-Rolling Circle Amplification. Analyst, 138, 197-203. https://doi.org/10.1039/C2AN36118C
[10] Majhi, P.R. and Shafer, R.H. (2006) Characterization of an Unusual Folding Pattern in a Catalytically Active Guanine Quadruplex Structure. Biopolymers, 82, 558-569. https://doi.org/10.1002/bip.20507
[11] Rezler, E.M., Seenisamy, J., Bashyam, S., Kim, M.Y., White, E., Wilson, W.D. and Hurley, L.H. (2005) Telomestatin and Diseleno Sapphyrin Bind Selectively to Two Different Forms of the Human Telomeric G-Quadruplex Structure. Journal of the American Chemical Society, 127, 9439-9447. https://doi.org/10.1021/ja0505088
[12] Renciuk, D., Kejnovská, I., Skoláková, P., Bednárová, K., Motlová, J. and Vorlícková, M. (2009) Arrangements of Human Telomere DNA Quadruplex in Physiologically Relevant K+ Solutions. Nucleic Acids Research, 37, 6625-6634.
[13] Li, T., Dong, S.J. and Wang, E.K. (2009) G-Quadruplex Aptamers with Peroxidase-Like DNAzyme Functions: Which Is the Best and How Does It Work? Chemistry—An Asian Journal, 4, 918. https://doi.org/10.1002/asia.200900019
[14] Nakayama, S., Wang, J.X. and Sintim, H.O. (2011) DNA-Based Peroxidation Cata-lyst—What Is the Exact Role of Topology on Catalysis and Is There a Special Binding Site for Catalysis? Chemistry—A European Journal, 17, 5691-5698. https://doi.org/10.1002/chem.201002349
[15] 徐静, 孔德明. 分子内裂分G-四链体脱氧核糖核酸酶用于Hg2+的特异性定量检测[J]. 分析化学, 2012, 3(40): 347-353.
[16] 张虹. 加标回收率的测定和结果判断[J]. 石油与天然气化工, 2000, 1(29): 50-52.
[17] Wu, J., Li, L., Zhu, D. and Cheng, G. (2011) Colorimetric Assay for Mercury (II) Based on Mercu-ry-Specific Deoxyribonucleic Acid-Functionalized Gold Nanoparticles. Analytica Chimica Acta, 694, 115-119. https://doi.org/10.1016/j.aca.2011.02.045