|
[1]
|
Bao, G. and Suresh, S. (2003) Cell and Molecular Mechanics of Biological Materials. Nature Materials, 2, 715-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Janmey, P.A. and Mcculloch, C.A. (2007) Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli. Annual Review of Biomedical Engineering, 9, 1-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Borau, C., Kamm, R.D. and Garcia-Aznar, J.M. (2011) Mechano-Sensing and Cell Migration: A 3D Model Approach. Physical Biology, 8, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Karcher, H., Lammerding, J., Huang, H.D., et al. (2003) A Three-Dimensional Viscoelastic Model for Cell Deformation with Experimental Verification. Biophysical. Journal, 85, 3336-3349. [Google Scholar] [CrossRef]
|
|
[5]
|
Fletcher, D.A. and Mullins, D. (2010) Cell Mechanics and the Cytoskeleton. Nature, 463, 485-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cukierman, E., Pankov, R., Stevens, D.R., et al. (2001) Taking Cell-Matrix Adhesions to the Third Dimension. Science, 294, 1708-1712. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Giannone, G., Dubin-Thaler, B.J., Rossier, O., et al. (2007) Lamellipodial Actin Mechanically Links Myosin Activity with Adhesion-Site Formation. Cell, 128, 561-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Qian, J., Wang, J. and Gao, H. (2008) Lifetime and Strength of Adhesive Molecular Bond Clusters between Elastic Media. Langmuir, 24, 1262-1270. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Belletti, B., Nicoloso, M.S., Schiappacassi, M., et al. (2008) Stathmin Activity Influences Sarcoma Cell Shape, Motility, and Metastatic Potential. Molecular Biology of the Cell, 19, 2003-2013. [Google Scholar] [CrossRef]
|
|
[10]
|
Friedl, P., Zanker, K.S. and Brocker, E.B. (1998) Cell Migration Strategies in 3D Extracellular Matrix: Differences in Morphology, Cell Matrix Interactions, and Integrin Function. Microscopy Research and Technique, 43, 369-378. [Google Scholar] [CrossRef]
|
|
[11]
|
Even-Ram, S. and Yamada, K.M. (2005) Cell Migration in 3D Matrix. Current Opinion in Cell Biology, 17, 524-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Friedl, P. and Gilmour, D. (2009) Collective Cell Migration in Morphogenesis, Regeneration and Cancer. Nature Reviews Molecular Cell Biology, 10, 445-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wolf, K. and Friedl, P. (2009) Mapping Proteolytic Cancer Cell-Extracellular Matrix Interfaces. Clinical & Experimental Metastasis, 26, 289-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tsujioka, M. (2011) Cell Migration in Multicellular Environments. Development, Growth & Differentiation, 53, 528- 537. [Google Scholar] [CrossRef]
|
|
[15]
|
Blaser, H., Reichman-Fried, M., Castanon, I., et al. (2006) Migration of Zebra Fish Primordial Germ Cells: A Role for Myosin Contraction and Cytoplasmic Flow. Developmental Cell, 11, 613-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ridley, A.J. (2011) Life at the Leading Edge. Cell, 145, 1012-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Charras, G. and Paluch, E. (2008) Blebs Lead the Way: How to Migrate without Lamellipodia. Nature Reviews Molecular Cell Biology, 9, 730-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wolf, K., Mazo, I., Leung, H., et al. (2003) Compensation Mechanism in Tumor Cell Migration: Mesenchymal-Amoeboid Transition after Blocking of Pericellular Proteolysis. The Journal of Cell Biology, 160, 267-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Friedl, P. and Wolf, K. (2003) Tumour-Cell Invasion and Migration: Diversity and Escape Mechanisms. Nature Reviews Cancer, 3, 362-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sanz-Moreno, V. and Marshall, C.J. (2010) The Plasticity of Cytoskeletal Dy-namics Underlying Neoplastic Cell Migration. Current Opinion in Cell Biology, 22, 690-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Friedl, P. and Wolf, K. (2010) Plasticity of Cell Migration: A Multiscale Tuning Model. The Journal of Cell Biology, 188, 11-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bergert, M., Chandradoss, S.D., Desai, R.A., et al. (2012) Cell Mechanics Control Rapid Transitions between Blebs and Lamellipodia during Migration. Proceedings of the National Academy of Sciences of the United States of America, 109, 14434-14439. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lim, F.Y., Koon, Y.L. and Chiam, K.H. (2013) A Computational Model of Amoeboid Cell Migration. Computer Methods in Biomechanics and Biomedical Engineering, 16, 1085-1095. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lammermann, T. and Sixt, M. (2009) Mechanical Modes of “Amoeboid” Cell Migration. Current Opinion in Cell Biology, 21, 636-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Barnhart, E.L., Lee, K.C., Keren, K., et al. (2011) An Adhe-sion-Dependent Switch between Mechanisms That Determine Motile Cell Shape. PLOS Biology, 9, 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Paulus, W., Baur, I., Beutler, A.S., et al. (1996) Diffuse Brain Invasion of Glioma Cells Requires Beta 1 Integrins. Laboratory Investigation: A Journal of Technical Methods and Pathology, 75, 819-826.
|
|
[27]
|
Shao, D.Y., Levine, H. and Rappel, W.J. (2012) Coupling Actin Flow, Adhesion, and Morphology in a Computational Cell Motility Model. Proceedings of the National Academy of Sciences of the United States of America, 109, 6851- 6856. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Paluch, E., Sykes, C., Prost, J., et al. (2006) Dynamic Modes of the Cortical Actomyosin Gel during Cell Locomotion and Division. Trends in Cell Biology, 16, 5-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Charras, G.T., Hu, C.-K., Coughlin, M., et al. (2006) Reassembly of Contractile Actin Cortex in Cell Blebs. The Journal of Cell Biology, 175, 477-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Charras, G.T., Coughlin, M., Mitchison, T.J., et al. (2008) Life and Times of a Cellular Bleb. Biophysical Journal, 94, 1836-1853. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Charras, G.T. (2008) A Short History of Blebbing. Journal of Microscopy-Oxford, 231, 466-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Charras, G.T., Yarrow, J.C., Horton, M.A., et al. (2005) Non-Equilibration of Hydrostatic Pressure in Blebbing Cells. Nature, 435, 365-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Paluch, E., Piel, M., Prost, J., et al. (2005) Cortical Actomyosin Breakage Triggers Shape Oscillations in Cells and Cell Fragments. Biophysical Journal, 89, 724-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rintoul, R.C. and Sethi, T. (2001) The Role of Extracellular Matrix in Small-Cell Lung Cancer. The Lancet. Oncology, 2, 437-442. [Google Scholar] [CrossRef]
|
|
[35]
|
Friedl, P., Borgmann, S. and Brocker, E.B. (2001) Amoeboid Leukocyte Crawling through Extracellular Matrix: Lessons from the Dictyostelium Paradigm of Cell Movement. Journal of Leukocyte Biology, 70, 491-509.
|
|
[36]
|
Friedl, P. and Wolf, K. (2003) Proteolytic and Non-Proteolytic Migration of Tumour Cells and Leucocytes. Biochemical Society Symposium, 277-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yoshida, K. and Soldati, T. (2006) Dissection of Amoeboid Movement into Two Mechanically Distinct Modes. Journal of Cell Science, 119, 3833-3844. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
樊学军. 细胞力学[J]. 力学进展, 1995, 25(2): 197-208.
|
|
[39]
|
李敬生, 昌庆, 等. 细胞结构的力学模型及模拟的最新进展[J]. 力学进展, 2004, 34(3): 393-398.
|
|
[40]
|
Lim, C.T., Zhou, E.H. and Quek, S.T. (2006) Mechanical Models for Living Cells—A Review. Journal of Biomechanics, 39, 195-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Evans, E. and Yeung, A. (1989) Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipet Aspiration. Biophysical Journal, 56, 151-160. [Google Scholar] [CrossRef]
|
|
[42]
|
李宝龙. 细胞骨架力学模型的研究进展[J]. 四川建筑科学, 2004, 40(2): 34-38.
|
|
[43]
|
Lauffenburger, D.A. and Horwitz, A.F. (1996) Cell Migration: A Physically Integrated Molecular Process. Cell, 84, 359-369. [Google Scholar] [CrossRef]
|
|
[44]
|
Ridley, A.J., Schwartz, M.A., Burridge, K., et al. (2003) Cell Migration: Integrating Signals from Front to Back. Science, 302, 1704-1709. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Friedl, P. and Wolf, K. (2009) Proteolytic Interstitial Cell Migration: A Five-Step Process. Cancer and Metastasis Reviews, 28, 129-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gibson, L.J. and Ashby, M.F. (1982) The Mechanics of Three-Dimensional Cellular Materials. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 382, 43-59. [Google Scholar] [CrossRef]
|
|
[47]
|
Ingber, D.E. (1993) Cellular Tensegrity: Defining New Rules of Biological Design That Govern the Cytoskeleton. Journal of Cell Science, 104, 613-627.
|
|
[48]
|
Ingber, D.E. (1998) Cellular Basis of Mechanotransduction. The Biological Bulletin, 194, 323-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yeung, A. and Evans, E. (1989) Cortical Shell-Liquid Core Model for Passive Flow of Liquid-Like Spherical Cells into Micropipets. Biophysical Journal, 56, 139-149. [Google Scholar] [CrossRef]
|
|
[50]
|
Theret, D.P., Levesque, M.J., Sato, M., et al. (1988) The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements. Journal of Biomechanical Engineering, 110, 190-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Schmid-Schonbein, G.W., Sung, K.L., Tozeren, H., et al. (1981) Passive Mechanical Properties of Human Leukocytes. Biophysical Journal, 36, 243-256. [Google Scholar] [CrossRef]
|
|
[52]
|
Satcher, R.L., Jr. and Dewey, C.F., Jr. (1996) Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton. Biophysical Journal, 71, 109-118. [Google Scholar] [CrossRef]
|
|
[53]
|
Stamenovic, D. and Coughlin, M.F. (1999) The Role of Prestress and Architecture of the Cytoskeleton and Deformability of Cytoskeletal Filaments in Mechanics of Adherent Cells: A Quantitative Analysis. Journal of Theoretical Biology, 201, 63-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Stamenovic, D. and Coughlin, M.F. (2000) A Quantitative Model of Cellular Elasticity Based on Tensegrity. Journal of Biomechanical Engineering, 122, 39-43.
|
|
[55]
|
Coughlin, M.F. and Stamenovic, D. (2003) A Prestressed Cable Network Model of the Adherent Cell Cytoskeleton. Biophysical Journal, 84, 1328-1336. [Google Scholar] [CrossRef]
|
|
[56]
|
Ross, C. and Ethier, C.A.S. (2007) Introductory Biomechanics: From Cells to Organisms.
|
|
[57]
|
Wang, N., Butler, J.P. and Ingber, D.E. (1993) Mechanotransduction across the Cell Surface and through the Cytoskeleton. Science, 260, 1124-1127. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, N. and Ingber, D.E. (1994) Control of Cytoskeletal Mechanics by Extracellular Matrix, Cell Shape, and Mechanical Tension. Biophysical Journal, 66, 2181-2189. [Google Scholar] [CrossRef]
|
|
[59]
|
Hubmayr, R.D., Shore, S.A., Fredberg, J.J., et al. (1996) Pharmacological Activation Changes Stiffness of Cultured Human Airway Smooth Muscle Cells. The American Journal of Physiology, 271, C1660-C1668.
|
|
[60]
|
Cai, S., Pestic-Dragovich, L., O’donnell, M.E., et al. (1998) Regulation of Cytoskeletal Mechanics and Cell Growth by Myosin Light Chain Phosphorylation. American Journal of Physiology-Cell Physiology, 275, C1349-C1356.
|
|
[61]
|
Mcconnaughey, W.B. and Petersen, N.O. (1980) Cell Poker: An Apparatus for Stress-Strain Measurements on Living Cells. The Review of Scientific Instruments, 51, 575-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Petersen, N.O., Mcconnaughey, W.B. and Elson, E.L. (1982) Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B. Proceedings of the National Academy of Sciences of the United States of America, 79, 5327-5331. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zahalak, G.I., Mcconnaughey, W.B. and Elson, E.L. (1990) Determination of Cellular Mechanical Properties by Cell Poking, with an Application to Leukocytes. Journal of Biomechanical Engineering, 112, 283-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Bausch, A.R., Ziemann, F., Boulbitch, A.A., et al. (1998) Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry. Biophysical Journal, 75, 2038-2049. [Google Scholar] [CrossRef]
|
|
[65]
|
Bausch, A.R., Hellerer, U., Essler, M., et al. (2001) Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells Stimulated with Thrombin: A Magnetic Bead Microrheology Study. Biophysical Journal, 80, 2649-2657. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Dong, C., Skalak, R. and Sung, K.L. (1991) Cytoplasmic Rheology of Passive Neutrophils. Biorheology, 28, 557-567.
|
|
[67]
|
Hochmuth, R.M., Ting-Beall, H.P., Beaty, B.B., et al. (1993) Viscosity of Passive Human Neutrophils Undergoing Small Deformations. Biophysical Journal, 64, 1596-1601. [Google Scholar] [CrossRef]
|
|
[68]
|
Tsai, M.A., Frank, R.S. and Waugh, R.E. (1993) Passive Me-chanical Behavior of Human Neutrophils: Power-Law Fluid. Biophysical Journal, 65, 2078-2088. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Dong, C., Skalak, R., Sung, K.L., et al. (1988) Passive Deformation Analysis of Human Leukocytes. Journal of Biomechanical Engineering, 110, 27-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Mow, V.C., Kuei, S.C., Lai, W.M., et al. (1980) Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments. Journal of Biomechanical Engineering, 102, 73-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Leterrier, J.F. (2001) Water and the Cytoskeleton. Cellular and Molecular Biology, 47, 901-923.
|
|
[72]
|
Shin, D. and Athanasiou, K. (1999) Cytoindentation for Obtaining Cell Biomechanical Properties. Journal of Orthopaedic Research, 17, 880-890. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Mahaffy, R.E., Shih, C.K., Mackintosh, F.C., et al. (2000) Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells. Physical Review Letters, 85, 880-883. [Google Scholar] [CrossRef]
|
|
[74]
|
Maksym, G.N., Fabry, B., Butler, J.P., et al. (2000) Mechanical Properties of Cultured Human Airway Smooth Muscle Cells from 0.05 to 0.4 Hz. Journal of Applied Physiology, 89, 1619-1632.
|
|
[75]
|
Fabry, B., Maksym, G.N., Butler, J.P., et al. (2001) Scaling the Microrheology of Living Cells. Physical Review Letters, 87, 4. [Google Scholar] [CrossRef]
|
|
[76]
|
Alcaraz, J., Buscemi, L., Grabulosa, M., et al. (2003) Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy. Biophysical Journal, 84, 2071-2079. [Google Scholar] [CrossRef]
|
|
[77]
|
Mijailovich, S.M., Kojic, M., Zivkovic, M., et al. (2002) A Finite Element Model of Cell Deformation during Magnetic Bead Twisting. Journal of Applied Physiology, 93, 1429-1436. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
余昶, 张怡, 刘肖珩. 流体剪切应力诱导内皮细胞迁移的力学-化学信号途径[J]. 航天医学工程, 2007, 20(4): 308-312.
|
|
[79]
|
彭亦良, 梁后杰. 癌细胞运动与迁移的分子机制[J]. 中国生物化学与分子生物学报, 2006, 22(10): 794-798.
|
|
[80]
|
Zigmond, S.H., Levitsky, H.I. and Kreel, B.J. (1981) Cell Polarity: An Examination of Its Behavioral Expression and Its Consequences for Polymorphonuclear Leukocyte Chemotaxis. The Journal of Cell Biology, 89, 585-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Weiner, O.D. (2002) Regulation of Cell Polarity during Eukaryotic Chemotaxis: The Chemotactic Compass. Current Opinion in Cell Biology, 14, 196-202. [Google Scholar] [CrossRef]
|
|
[82]
|
Hoeller, O. and Kay, R.R. (2007) Chemotaxis in the Absence of PIP3 Gradients. Current Biology, 17, 813-817. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Van Haastert, P.J.M. and Bosgraaf, L. (2009) The Local Cell Curvature Guides Pseudopodia towards Chemoattractants. Hfsp Journal, 3, 282-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
King, J.S. and Insall, R.H. (2009) Chemotaxis: Finding the Way forward with Dictyostelium. Trends in Cell Biology, 19, 523-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Bahat, A., Caplan, S.R. and Eisenbach, M. (2012) Thermotaxis of Human Sperm Cells in Extraordinarily Shallow Temperature Gradients over a Wide Range. PLoS ONE, 7, e41915. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Zhao, M. (2009) Electrical Fields in Wound Healing—An Overriding Signal That Directs Cell Migration. Seminars in Cell & Developmental Biology, 20, 674-682. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Zaman, M.H., Kamm, R.D., Matsudaira, P., et al. (2005) Computational Model for Cell Migration in Three-Dimen- sional Matrices. Biophysical Journal, 89, 1389-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Dokukina, I.V. and Gracheva, M.E. (2010) A Model of Fibroblast Motility on Substrates with Different Rigidities. Biophysical Journal, 98, 2794-2803. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Lo, C.M., Wang, H.B., Dembo, M., et al. (2000) Cell Movement Is Guided by the Rigidity of the Substrate. Biophysical Journal, 79, 144-152. [Google Scholar] [CrossRef]
|
|
[90]
|
Discher, D.E., Janmey, P. and Wang, Y.L. (2005) Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 310, 1139-1143. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Wong, H.C. and Tang, W.C. (2011) Computational Study of Local and Global ECM Degradation and the Effects on Cell Speed and Cell-Matrix Tractions. Nano Communication Networks, 2, 119-124. [Google Scholar] [CrossRef]
|
|
[92]
|
Jamaleddin Mousavi, S., Hamdy Doweidar, M. and Doblare, M. (2013) 3D Computational Modelling of Cell Migration: A Mechano-Chemo-Thermo-Electrotaxis Approach. Journal of Theoretical Biology, 329, 64-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Mousavi, S.J., Doweidar, M.H. and Doblare, M. (2014) Computational Modelling and Analysis of Mechanical Conditions on Cell Locomotion and Cell-Cell Interaction. Computer Methods in Biomechanics and Biomedical Engineering, 17, 678-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Bosgraaf, L. and Van Haastert, P.J.M. (2009) Navigation of Chemotactic Cells by Parallel Signaling to Pseudopod Persistence and Orientation. PLoS ONE, 4, e6842. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Higazi, A.A., Kniss, D., Manuppello, J., et al. (1996) Thermotaxis of Human Trophoblastic Cells. Placenta, 17, 683- 687. [Google Scholar] [CrossRef]
|
|
[96]
|
Nishimura, K.Y., Isseroff, R.R. and Nuccitelli, R. (1996) Human Keratinocytes Migrate to the Negative Pole in Direct Current Electric Fields Comparable to Those Measured in Mammalian Wounds. Journal of Cell Science, 109, 199-207.
|
|
[97]
|
Gou, X., Yang, H., Fahmy, T.M., et al. (2014) Direct Measurement of Cell Protrusion Force Utilizing a Robot-Aided Cell Manipulation System with Optical Tweezers for Cell Migration Control. The International Journal of Robotics Research, 33, 1782-1792. [Google Scholar] [CrossRef]
|
|
[98]
|
Yang, H., Gou, X., Wang, Y., et al. (2015) A Dynamic Model of Chemoattractant-Induced Cell Migration. Biophysical Journal, 108, 1645-1651. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Van Haastert, P.J.M. (2010) Chemotaxis: Insights from the Extending Pseudopod. Journal of Cell Science, 123, 3031- 3037. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Allena, R. (2013) Cell Migration with Multiple Pseudopodia: Temporal and Spatial Sensing Models. Bulletin of Mathematical Biology, 75, 288-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Allena, R. and Aubry, D. (2012) “Run-and-Tumble” or “Look-and-Run”? A Mechanical Model to Explore the Behavior of a Migrating Amoeboid Cell. Journal of Theoretical Biology, 306, 15-31. [Google Scholar] [CrossRef] [PubMed]
|