非牛顿流体中单气泡运动行为研究
Rising Behavior of Single Bubbles in Non-Newtonian Fluid
DOI: 10.12677/IJM.2017.61006, PDF, HTML, XML, 下载: 1,596  浏览: 4,482  国家自然科学基金支持
作者: 许晓飞, 刘凤霞, 魏 炜, 刘志军:大连理工大学流体与粉体工程研究设计所,辽宁 大连;张 菊:大连理工大学流体与粉体工程研究设计所,辽宁 大连;中国核电工程有限公司,北京
关键词: 非牛顿流体单气泡气泡行为VOF模型Non-Newtonian Fluid Single Bubble Bubble Behavior VOF Model
摘要: 利用高速摄像机及数字图像处理技术对单气泡在不同质量分数的羧甲基纤维素钠(CMC)水溶液中的运动行为进行实验测试,得到气泡运动轨迹及上升速度。同时,采用VOF (volume of fluid)模型,模拟计算单气泡在不同质量分数CMC水溶液中的上升过程,考察上升气泡对周围液相场的影响规律。实验结果表明,流变特性对单气泡在CMC水溶液中的运动行为有较大影响。气泡在不同质量分数CMC水溶液中的上升速度沿水深变化规律不同。上升速度的稳定值随CMC水溶液的质量分数增加而减小。摆动运动的强度随CMC水溶液质量分数的增加而减弱,最终气泡趋于直线上升。模拟结果较好再现了单气泡在不同质量分数CMC水溶液中的上升过程。同时还发现,在低质量分数的CMC水溶液中,气泡摆动上升会在尾迹区形成交替漩涡;而在高质量分数的溶液中,尾迹区的液相流场基本按照对称分布。气泡对尾部液相流场的影响范围随着CMC水溶液质量分数的增加而减小。
Abstract: The high speed photography and digital image processing technique have been employed to measure the rising behavior of the single bubble in carboxymethyl cellulose (CMC) solution to obtain the trajectory and the rising velocity of the bubble. Meanwhile, based on the volume of fluid (VOF) model, numerical simulation has been conducted to study the rising process of the single bubble in CMC solution, and the influence of the rising bubble on the velocity field of the surrounding liquid phase has been investigated. According to the experimental results, the rheological property has great influence on the rising behavior of single bubble in CMC solution. It is shown that the rising velocity of the bubble in the CMC solutions with different weight percentage has different variation patterns. The value of the steady rising velocity decreases with the increase of the weight percentage of the CMC solution. The strength of the oscillation grows weaker with the increase of the weight percentage of CMC solution and eventually tends to ascend along a straight line. The simulation results well predict the bubble’s rising process in CMC solution with different weight percentage. Furthermore, the simulated results show that the bubble generates alternate vortex in CMC solution with lower weight percentage as bubble swings up, while in the CMC solution with higher weight percentage, the flow field of liquid phase distributes symmetrically. The influence domain of the rising bubble on the wake field decreases with the increase of the weight percentage of the CMC solution.
文章引用:许晓飞, 张菊, 刘凤霞, 魏炜, 刘志军. 非牛顿流体中单气泡运动行为研究[J]. 力学研究, 2017, 6(1): 46-55. https://doi.org/10.12677/IJM.2017.61006

参考文献

[1] Kasinski, S., Slota, M., Markowski, M., et al. (2016) Municipal Waste Stabilization in a Reactor with an Integrated Active and Passive Aeration System. Waste Management, 50, 31-38.
[2] 谢小明. 精准曝气控制在污水处理厂中的应用和探索[J]. 中国给水排水, 2016, 32(6): 24-27.
[3] Boegman, L. and Sleep, S. (2012) Feasibility of Bubble Plume Destratification of Central Lake Erie. Journal of Hydraulic Engineering, 138,985-989.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000626
[4] Zhou, S.L., Huang, T.L., Ngo, H.H., et al. (2016) Nitren Removal Characteristics of Indigenous Aerobic Denitrifiers and Changes in the Microbial Community of a Reservoir Enclosure System via in Situ Oxygen Enhancement Using Water Lifting and Aeration Technology. Bioresource Technology, 214, 63-73.
[5] Jin, P.K., Wang, X.B., Wang, X.C., et al. (2015) A New Step Aeration Approach Towards the Improvement of Nitrogen Remodel in a Full Scale Carrousel Oxidation Ditch. Bioresource Technology, 198, 23-30.
[6] Garcia-Ochoa, F., Gomez, E., Santos, V.E., et al. (2010) Oxygen Uptake Rate in Microbial Process: An Overview. Biochemical Engineering Journal, 49,289-307.
[7] Zhou, X., Han, Y.P. and Guo, X.S. (2015) Identification and Evaluation of SND in a Full-Scale Multi-Channel Oxidation Ditch System under Different Aeration Modes. Chemical Engineering Journal, 259, 715-723.
[8] Clift, R., Grace, R. and Weber, M.E. (1978) Bubbles, Drops and Particles. Academic Press, New York.
[9] Ellingsen, K. and Risso, F. (2001) On the Rise of an Ellipsoidal Bubble in Water: Oscillatory Paths and Liquid-Induced Velocity. Journal of Fluid Mechanics, 440, 235-268.
https://doi.org/10.1017/S0022112001004761
[10] Sanada, T., Shirot,a M. and Watanabe, M. (2007) Bubble Wake Visualization by Using Photochromic Dye. Chemical Engineering Science, 62, 7264-7273.
[11] Mougin, G. and Magnaudet, J. (2007) Wake Instability of a Fixed Spheroidal Bubble. Journal of Fluid Mechanics, 572, 311-337.
[12] Zenit, R. and Magnaudet, J. (2008) Path Instability of Rising Spheroidal Air Bubbles: A Shape Controlled Processes. Physics of Fluids, 20, 173-187.
https://doi.org/10.1063/1.2940368
[13] Yang, B. and Properetti, A. (2007) Linear Stability of the Flow past a Spheroidal Bubble. Journal of Fluid Mechanics, 582, 53-78.
https://doi.org/10.1017/S0022112007005691
[14] 欧阳的华, 潘功配, 关华, 等. 烟火药水下燃烧气泡的实验研究[J]. 实验力学, 2009, 24(4): 347-352.
[15] Boum, L. and Kraume, M. (2015) Fluid Dynamics of Bubble Swarms Rising in Newtonian and Non-Newtonian Liquids in Flat Sheet Membrane Systems. Journal of Membrane Science, 475, 533-544.
[16] Rathod, M.L. and Kokni, J.L. (2016) Extension Rate Distribution and Impact on Bubble Size Distribution in Newtonian and Non-Newtonian Fluid in a Twin Screw Co-Rotating Mixer. Journal of Food Engineering, 169, 214-227.
[17] Passos, A.D., Voulgaropoulos, V.P., Paras, SV., et al. (2015) The Effect of Surfactant Addition on the Performance of a Bubble Column Containing a Non-Newtonian Liquid. Chemical Engineering Research and Design, 95, 93-104.
https://doi.org/10.1016/j.cherd.2015.01.008
[18] Laera, G., Giordano, C., Pollice, A., et al. (2007) Membrane Bioreactor Sludge Rheology at Different Solid Retention Times. Water Research, 41, 4197-4203.
[19] Wang, Y.L. and Dentel, S.K. (2010) The Effect of High Speed Mixing and Polymer Dosing Rates on the Geometric and Rheological Characteristics of Conditioned Anaerobic Digested Sludge (ADS). Water Research, 44, 6041-6052.
[20] Legendre, D., Zenit, R. and Velez-Cordero, J.R. (2012) On the Deformation of Gas Bubbles in Liquids. Physics of Fluids, 24, 1-12.
https://doi.org/10.1063/1.4705527
[21] 张颖, 赵生伟, 王占江, 等. 水下爆炸气泡脉动测量及分析[J]. 实验力学, 2011, 26(1): 67-72.
[22] Hirt, C.W. and Nichols, B.D. (1981) Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39, 201-225.
[23] Brackbill, J.U., Kothe, D.B. and Zemach, C. (1992) A Continuum Method for Modeling Surface Tension. Journal of Computational Physics, 100, 335-354.
[24] Rider, W.J. and Kothe, D.B. (1998) Reconstructing Volume Tracking. Journal of Computational Physics, 141, 112- 152.
[25] Brenn, G., Kolobaric, V. and Durst, F. (2006) Shape Oscillations and Path Transition of Bubbles Rising in a Model Bubble Column. Chemical Engineering Science, 61, 3795-3805.
[26] Sakakibara, K., Yamada, M., Miyamoto, Y., et al. (2007) Measurement of the Surrounding Liquid Motion of a Single Rising Bubble Using a Dual-Camera PIV System. Flow Measurement and Instrumentation, 18, 211-215.