TP RAM的低功耗设计及应用
Low Power Design of TP RAM and Its Application
DOI: 10.12677/OJCS.2017.61001, PDF, HTML, XML, 下载: 1,734  浏览: 3,940  国家自然科学基金支持
作者: 周清军, 邢 静:西安培华学院中兴电信学院,陕西 西安
关键词: TP RAMSP RAM功耗优化接口转换逻辑TP RAM SP RAM Optimization of Power Consumption Interface Logics of Conversion
摘要: 针对SoC中TP RAM的面积及功耗较大问题,提出一种优化设计方法。通过将SoC中的TP RAM替换成SP RAM,并在SP RAM外围增加读写接口转换逻辑,使替换后的RAM实现原TP RAM的功能,保持对外接口不变。将文中方法应用于一款多核SoC芯片,该芯片经TSMC 28 nm HPM工艺成功流片,die size为10.7 mm × 11.9 mm,功耗为19.8 W。测试结果表明:优化后的RAM面积减少了24.5%,功耗降低了45.16%。
Abstract: As the area and power consumption of TP RAM in SoC are large, a new design method of optimization is proposed. In order to achieve the function of the original TP RAM and keep the external interface unchanged, TP RAM is replaced with SP RAM, and read-write interface logics of conversion are added around SP RAM. The method discussed in this paper is used in the multi core SoC chip which has been successfully taped out in TSMC 28 nm HPM process. The chip occupies 10.7 mm × 11.9 mm of die area and consumes 19.8 W. The testing results indicate that the area of optimized RAM is reduced by 24.5%, and the power saving is 45.16%.
文章引用:周清军, 邢静. TP RAM的低功耗设计及应用[J]. 电路与系统, 2017, 6(1): 1-7. https://doi.org/10.12677/OJCS.2017.61001

参考文献

[1] Chiu, P.-F. (2012) Low Store Energy, Low VDDmin, 8T2R Nonvolatile Latch and SRAM with Vertical-Stacked Resistive Memory (Memristor) Devices for Low Power Mobile Applications. IEEE Journal of Solid-State Circuits, 47, 1483-1496.
https://doi.orgg/10.1109/JSSC.2012.2192661
[2] Lutkemeier, S., Jungeblut, T., Berge, H.K.O., et al. (2013) A 65 nm 32 b Subthreshold Processor with 9T Multi-Vt SRAM and Adaptive Supply Voltage Control. IEEE Journal of Solid-State Circuits, 48, 8-19.
https://doi.orgg/10.1109/JSSC.2012.2220671
[3] Aghamohammadi, M.R. and Abdolahinia, H. (2014) A New Approach for Optimal Sizing of Battery Energy Storage System for Primary Frequency control of Islanded Microgrid. International Journal of Electrical Power and Energy Systems, 54, 325-333.
[4] 柏娜, 冯越, 龙肖虎, 等. 极低电源电压和极低功耗的亚阈值SRAM存储单元设计[J]. 东南大学学报: 自然科学版, 2013, 43(2): 268-273.
[5] 张丽, 庄奕琪, 赵巍胜, 等. 一种适用于自旋磁随机存储器的低压写入电路[J]. 西安电子科技大学学报: 自然科学版, 2014, 43(3): 131-136.
[6] Yu, H.Z., Wang, P.J., Wang, D.S., et al. (2013) Discrete Ternary Particleswarm Optimization for Area Optimization of MPRM Circuits. Journal of Semiconductors, 34, 118-123.
https://doi.orgg/10.1088/1674-4926/34/2/025011
[7] 高闯, 吴利华, 刘海南, 等. 一种用于FPGA的可配置存储器设计[J]. 固体电子学研究与进展, 2016, 36(1): 67-70.
[8] Peng, S.-Y., Huang, T.-C., Lee, Y.-H., et al. (2013) Instruction-Cycle-Based Dynamic Voltage Scaling Power Management for Low-Power Digital Signal Processor with 53% Power Savings. IEEE Journal of Solid-State Circuits, 48, 2649-2661.
https://doi.orgg/10.1109/JSSC.2013.2274885
[9] Sheng, D., Chung, C.-C., Lee, C.-Y., et al. (2011) A Low-Power and Portable Spread Spectrum Clock Generator for SoC Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19, 1113-1117.
https://doi.orgg/10.1109/TVLSI.2010.2044903
[10] Hemalatha, A.A. (2011) Shanmugam.Computer Aided Design for Low Power Fir Processor on System On-Chip Platform Architecture for High Performance DSP Applications. International Journal of Computer Science and Network Security, 11, 38-42.
[11] Rick, P. and Aurangzeb, K. (2014) Design for Data-Center, Low-Power and SoCs. 2014 IEEE Proceedings of the Custom Integrated Circuits Conference, San Jose, California, 15-17 September 2014, 1-1.
[12] Jain, A., Subramanian, S., Parekhji, R.A., et al. (2011) Design Techniques with Multiple Scan Compression Codecs for Low Power and High Quality Scan Test. Journal of Low Power Electronics, 7, 502-515.
https://doi.orgg/10.1166/jolpe.2011.1161
[13] Ward-Foxton, S. (2012) Wireless SoCs Use Cortex-MO Core To Slash Power Consumption. Microwaves & RF, 51, 36.
[14] Mahdoum, A. (2012) Combined Heuristics for Synthesis of SOCs with Time and Power Constraints. Computers and Electrical Engineering, 38, 1687-1702.
[15] 沈玲羽, 庞屹林, 范阳, 等. 红外读出电路中低功耗列读出级电路的设计[J]. 固体电子学研究与进展, 2015, 35(4): 378-382.
[16] Lakdawala, H., Schaecher, M., Fu, C.-T., et al. (2013) A 32 nm SoC with Dual Core ATOM Processor and RF WiFi Transceiver. IEEE Journal of Solid-State Circuits, ,48, 91-103.
https://doi.orgg/10.1109/JSSC.2012.2222812