铁酸锌的酸浸动力学及含铁酸锌废料浸出研究
Study on Kinetics of Acid Leaching of Zinc Ferrite and Leaching of Zinc Ferrite Waste Material
DOI: 10.12677/MEng.2017.41009, PDF, HTML, XML, 下载: 1,827  浏览: 4,030  科研立项经费支持
作者: 黄博云, 颜文斌, 周再兴:吉首大学化学化工学院,湖南 吉首
关键词: 铁酸锌酸浸动力学活化能Zinc Ferrite Acid Leaching Kinetics Activation Energy
摘要: 为确定铁酸锌浸出过程中的最优控制参数,高效浸出含铁酸锌物料中的锌和铁,以制备的铁酸锌为原料,硫酸作浸取剂,考察了浸出温度、硫酸初始浓度对锌浸出效果的影响,得到了浸出反应动力学方程式。结果表明,在温度为50℃~90℃,硫酸与铁酸锌初始物质的量之比为6时,浸出过程符合减缩核动力学模型,表观反应活化能为63.50 kJ/mol,浸出反应受表面化学反应步骤控制。以含铁酸锌废料为原料,考察了浸出条件对锌、铁浸出率的影响。在硫酸与锌和铁物质的量之比为1.2:1,浸出温度为95℃,矿物粒径为0.048 mm,浸出时间为4 h的条件下,含铁酸锌废料中锌、铁浸出率分别为90.52%、90.14%。
Abstract: In order to determine the optimal control parameters for leaching zinc ferrite and efficiently extract zinc and iron from zinc ferrite materials, the effects of temperature and sulfuric acid initial concentration on the kinetics of leaching reaction were investigated with prepared zinc ferrite as raw material and sulfuric acid as leaching agent. The macroscopic reaction kinetic equation was obtained. The results show that the leaching kinetics of zinc is suitable for the reduction of nuclear kinetics model under the condition that temperature is from 50˚C to 90˚C and sulfuric acid and zinc ferrite initial molar ratio is 6. The apparent activation energy is calculated to be 63.50 kJ/mol. The leaching reaction process is controlled by surface chemical reaction steps. With zinc ferrite waste material as the research object, effects of leaching conditions on the leaching rate of zinc and iron were investigated. The leaching rate of zinc and iron from zinc ferrite waste are 90.52% and 90.14% under the condition of sulfuric acid to zinc and iron molar ratio of 1.2:1, leaching temperature of 95˚C, mineral particle size of 0.048 mm, leaching time of 4 h.
文章引用:黄博云, 颜文斌, 周再兴. 铁酸锌的酸浸动力学及含铁酸锌废料浸出研究[J]. 冶金工程, 2017, 4(1): 61-69. https://doi.org/10.12677/MEng.2017.41009

参考文献

[1] 彭海良. 常规湿法炼锌中铁酸锌的行为研究[J]. 湖南有色金属, 2004, 20(5): 20-22.
[2] 侯栋科, 彭兵, 柴立元, 等. 铁酸锌选择性还原的反应机理[J]. 中国有色金属学报, 2014, 24(10): 2634-2641.
[3] Yu, G., Peng, N., Zhou, L., et al. (2015) Selective Reduction Process of Zinc Ferrite and Its Application in Treatment of Zinc Leaching Residues. Transactions of Nonferrous Metals Society of China, 25, 2744-2752.
https://doi.org/10.1016/S1003-6326(15)63899-7
[4] 张纯, 闵小波, 张建强, 等. 锌冶炼中浸渣锌还原浸出机制与动力学[J]. 中国有色金属学报, 2016, 26(1): 197- 203.
[5] 王 侃, 周廷熙, 方锦. 酸浸渣强化冶炼工艺研究[J]. 云南冶金, 2008, 27(3): 29-31.
[6] Šárka, L., Juraj, L. and Dalibor, M. (2009) Selective Leaching of Zinc from Zinc Ferrite with Hydrochloric Acid. Hydrometallurgy, 95, 179-182.
https://doi.org/10.1016/j.hydromet.2008.05.040
[7] Zhao, Y.C. and Stanforth, R. (2000) Tech-nical Note Extraction of Zinc from Zinc Ferrites by Fusion with Caustic Soda. Minerals Engineering, 13, 1417-1421.
https://doi.org/10.1016/S0892-6875(00)00123-0
[8] 姚金环. 从铟铁酸锌中用机械活化方法强化浸出铟、锌的机理研究[D]: [博士学位论文]. 南宁: 广西大学, 2013.
[9] 张燕娟, 黎铉海, 潘柳萍, 等. 机械活化对铟铁酸锌溶解动力学及物化性质的影响[J]. 中国有色金属学报, 2012, 22(1): 315-323.
[10] 周再兴. 高铁低品位氧化锌矿湿法浸取提锌制备纳米氧化锌的研究[D]: [硕士学位论文]. 吉首: 吉首大学, 2010.
[11] 夏志华, 唐谟堂, 李仕庆, 等. 锌焙砂中浸渣高温高酸浸出动力学研究[J]. 矿冶工程, 2005, 25(2): 53-57.
[12] Qiu, H.D., Zhang, H., Zhao, B., et al. (2013) Dynamics Study on Vanadium Extraction Technology from Chloride Leaching Steel Slag. Rare Metal Materials and Engineering, 4, 696-699.
https://doi.org/10.1016/S1875-5372(13)60059-4
[13] 曾科, 何名飞, 覃文庆, 等. 含铟氧化锌提取铟的浸出动力学研究[J]. 矿冶工程, 2016, 36(1): 76-79, 82.
[14] 李洪桂, 郑清远, 张启修. 湿法冶金学[M]. 长沙: 中南大学出版社, 2002.
[15] 张焕军, 朱国才, 胡熙恩. (NH4)2SO4浸取轻烧氧化镁的动力学[J]. 清华大学学报自然科学版, 2003, 43(10): 1321-1323.
[16] 华一新. 冶金过程动力学导论[M]. 北京: 冶金工业出版社, 2004.