含氚氢同位素中少量氕的去除技术研究
The Fast Removal Techniques of a Small Amount of Protium from Hydrogen Isotopes Gas
DOI: 10.12677/NST.2017.52007, PDF, HTML, XML, 下载: 1,601  浏览: 3,630 
作者: 熊义富, 石 岩, 李 嵘, 蔚勇军, 唐 涛, 敬文勇:中国工程物理研究院材料研究所,四川 绵阳
关键词: 钯留滞法氢同位素去除分离Palladium Retention Method Hydrogen Isotopes Fast Removal Separation
摘要: 基于前期钯与氢同位素间的基础研究以及相关的工艺实验探索结果,提出了一种能从氘氚气体中快速去除少量氕的新方法—钯留滞法。该方法充分利用常温或低温下钯氢化物的同位素效应,使含氕的氘氚气体流经钯分离柱后,能将少量氕优先留滞在钯分离材料中,从而达到气相氕贫化、固相氕富集的分离效果。实验结果表明,与钯热置换法相比,在相同的处理时间及装钯量下,分离能力提高了近10倍,产品气的提取效率由40%提高至50%~60%左右,大大降低了工作人员的操作强度,提高了工作效率。
Abstract: Based on the early stage of the palladium interact with hydrogen isotopes of basic research and related technical research, a kind of new method was proposed which can quickly remove a small amount of protium from the deuterium-tritium gas—palladium retention method. The method makes full use of the isotope effect of palladium-hydride system. When hydrogen isotopes gas with a small amount of protium flows through the separation column at normal temperature or low temperature, a small amount of protium priority can be detention in palladium separation material, so as to achieve the gas phase protium dilution, and protium enrichment in solid phase .Results show that compared with palladium thermal displacement method, under the same processing time and the loading amount of palladium, by about 10 times the separation ability, product gas extraction efficiency from 40% to 60%, greatly reduce the intensity of the operating staff and improve work efficiency.
文章引用:熊义富, 石岩, 李嵘, 蔚勇军, 唐涛, 敬文勇. 含氚氢同位素中少量氕的去除技术研究[J]. 核科学与技术, 2017, 5(2): 54-58. https://doi.org/10.12677/NST.2017.52007

参考文献

[1] 蒋国强, 罗德礼, 陆光达, 孙灵霞. 氚和氚的工程技术[M]. 北京: 国防工业出版社, 2007: 11.
[2] Lee, M.W. (1993) Hydrogen Isotope Separation Experience at the Savannah River Site (U): WSRC-MS-93-255. Westinghouse Savannah River Company.
[3] Iwai, Y. and Yamanishi, T. (2002) H-D-T Cryogenic Distillation Experiments at TPL/JAERI in Support of ITER. Fusion Engineering and Design, 61-62, 553-560.
[4] 夏修龙, 王和义. 低温精馏氢同位素分离全回流模式研究[J]. 原子能科学技术, 2008, 42(4): 314-317.
[5] Golubkov, A.N., Vedeneev, A.I., Tenyaev, B.N., et al. (2000) Counterflow Hydrogen Isotope Separation Facility—Data on Tritium Activities. Fusion Engineering and Design, 49-50, 825-829.
[6] Ducret, D., Ballanger, A., Steimetz, J., et al. (2001) Hydrogen Isotopes Separation by Thermal Cycling Absorption Process. Fusion Engineering and Design, 58-59, 417-421.
[7] Lu, G.D, Jiang, G.Q. and Shen, C.S. (1995) An Experiment Investigation for Hydrogen and Deuterium Separation by Thermal Cycling Absorption Process. Fusion Science and Technology, 28,672-675.
[8] 钱晓静. 热循环吸附法分离氢同位素初步研究[D]: [硕士学位论文]. 绵阳: 中国工程物理研究院, 2006.