能量可回馈的电动汽车充电桩设计
The Design of Electric Vehicle Charging Pile Energy Reversible
DOI: 10.12677/SG.2017.72007, PDF, HTML, XML,  被引量 下载: 2,134  浏览: 5,069  科研立项经费支持
作者: 吕常智*, 王学峰:山东科技大学,山东 青岛;谢力华:深圳伊力科电源有限公司,广东 深圳
关键词: 充电桩能量可逆电动汽车节能环保功率因数Charging Pile Energy Reversible Electric Vehicle Energy Conservation Power Factor
摘要: 随着电动汽车的不断发展,对充电桩的要求也越来越高。传统的充电桩关注的重点是充电速度的快慢、多功能化、智能化。本文给出一种大功率能量可回馈的电动汽车充电桩的设计方案;给出了该系统的结构图及控制原理。该电动汽车充电桩可实现对电动汽车的快速充电,同时又能将电动汽车的蓄电池作为储能元件,把电能回馈到电网,实现能量的双向流动。系统的功率因数可接近1,有明显的节能效果。
Abstract: With the continuous development of electric vehicles, the charging pile is also getting higher and higher. The focus of the traditional charging pile is the speed of the charging speed, multi-func- tionalization and intellectualization. In this paper, a design scheme of charging pile for electric vehicle with high power and energy is given. The structure diagram and control principle of the system are given. The electric vehicle charging pile can realize the fast charging of electric vehicles, and the battery of the electric vehicle can be used as the energy storage element, and the electric energy can be fed back to the power grid to realize the bidirectional flow of the energy. Power factor of the system can be close to 1, and there is a significant effect of energy saving.
文章引用:吕常智, 王学峰, 谢力华. 能量可回馈的电动汽车充电桩设计[J]. 智能电网, 2017, 7(2): 59-66. https://doi.org/10.12677/SG.2017.72007

参考文献

[1] 王旭. 电动汽车智能充电桩的设计与研究[J]. 机电工程, 2014, 3(1): 393-396.
[2] 杨文海. 基于需求侧管理的电动汽车能量调控机制的研究[D]: [硕士学位论文]. 保定: 华北电力大学, 2012.
[3] 王鹿军. 分布式发电中三相三电平并网逆变器的若干关键技术的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2013.
[4] 蔡克卫. 基于LCL滤波器的微网逆变器控制策略研究[D]: [博士学位论文]. 大连: 大连理工大学, 2014.
[5] 陈道炼. 双向大升压比直流变换器型逆变器[J]. 电工技术学报, 2010(6): 55-62.
[6] 郑昕昕. 一种半周期SVPWM控制的三相双向Buck-Boost变流器[J]. 中国电机工程学报, 2013, 33(15): 19-28.
[7] Mantooth, H.A. (2009) Electro-thermal Simulation of an IGBT PWM Inverter. IEEE Transactions on Industrial Application, 45, 75-84.
[8] Casanellas, F.M. (1994) Losses in PWM Inverters Using IGBT. IEEE Transactions on Power Electronic, 4, 235-238.
https://doi.org/10.1049/ip-epa:19941349
[9] Wang, K., Lee, F.C. and Borojevic, D. (1994) A Comparative Study of Switching Losses of IGBT under Hard- Switching. Power Electronics Specialists Conference 25th Annual IEEE, 11-14.
[10] Pendharkar, S. and Shenai, K. (2008) Electrothermal Simulations in Punchthrough and Nonpunchthrough IGBT’s. IEEE Transactions on Electron Devices, 10, 2222-2231.
[11] Hefner, A.R. and Diebolt, D.M. (2009) An Experimentally Verified IGBT Model Implemented in the Sabercircuit Simulator. IEEE Transactions on Industrial Application, 31, 10-19.
[12] 周永鹏. 三相SPWM双向逆变器电压控制的数字化设计[J].电力电子技术, 2004, 38(1): 42-44.
[13] 钟诚. 分布式发电系统中双向逆变器控制关键技术研究[D]: [博士学位论文]. 北京: 中国农业大学, 2013.