基于MAS的孤岛微网分布式经济下垂控制
A Multi-Agent Based Distributed Economic Droop Control for Islanded Microgrid
DOI: 10.12677/SG.2017.72008, PDF, HTML, XML, 下载: 1,588  浏览: 2,784  国家自然科学基金支持
作者: 凌伟方*, 陈民铀, 李 强, 陈飞雄, 韦佐霖, 姚 池:输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆;吴浩然:国网河南省电力公司商丘供电公司,河南 商丘
关键词: MAS孤岛微网经济下垂分布式分层控制Multi-Agent System Islanded Microgrid Economic Droop Distributed Hierarchical Control
摘要: 传统下垂控制一般按照额定容量分配有功功率,未考虑分布式电源的运行成本,易引起微网运行成本偏高,针对这一问题,本文基于MAS理论提出了一种分布式经济下垂控制模型,实现了微网的最优经济运行。该模型采用两层控制结构,上层是基于MAS的通信网络,下层是基于下垂控制的微网。基于此模型,根据等微增率准则,提出分布式经济优化算法对目标函数进行求解,进而优化下垂控制的参考频率,实现了分布式电源按成本经济运行。该算法只需局部通信,在迭代过程中能够不会打破系统原有的功率平衡,且能够克服容量越界问题,具有较好的鲁棒性。通过算例分析了所提算法考虑出力越界以及环境和负荷同时波动情况下的收敛情况,仿真结果验证了所提算法的有效性。
Abstract: The active power is distributed proportionally to capacities of DGs in traditional droop control, which may result in the high operation cost because of no considering the cost. Based on this problem, a novel distributed economic droop control model based on the multi-agent theory is proposed for islanded microgrids. The proposed control model consists of two layers, where the top layer is a multi-agent based communication network, and the bottom layer is a droop controlled microgrid. Based on the model, a distributed economic optimal algorithm is proposed in terms of the equal incremental cost criterion. Then the frequency reference is optimized and the economic operation of DGs is achieved. In the algorithm only the local information is exchanged and the system power balance won’t be broken at the same time. Finally, case studies are carried out to test the performance, in which cases with capacity constraints are considered when both environmental and load demand fluctuate. Simulation results demonstrate the effectiveness of the proposed algorithm.
文章引用:凌伟方, 陈民铀, 李强, 陈飞雄, 韦佐霖, 姚池, 吴浩然. 基于MAS的孤岛微网分布式经济下垂控制[J]. 智能电网, 2017, 7(2): 67-78. https://doi.org/10.12677/SG.2017.72008

参考文献

[1] 王成山, 高菲, 李鹏, 等. 低压微网控制策略研究[J]. 中国电机工程学报, 2012, 32(25): 2-8.
[2] 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14.
[3] 苏晨, 吴在军, 吕振宇, 等. 基于边际成本下垂控制的自治微电网分布式经济运行控制[J]. 电力自动化设备, 2016(11): 59-66.
[4] Lin, C.E. and Viviani, G.L. (1984) Hierarchical Economic Dispatch for Piecewise Quadratic Cost Functions. IEEE Transactions on Power Apparatus & Systems, 103, 1170-1175.
https://doi.org/10.1109/TPAS.1984.318445
[5] Lin, C.E., Chen, S.T. and Huang, C.L. (1992) A Direct New-ton-Raphson Economic Dispatch. IEEE Transactions on Power Systems, 7, 1149-1154.
https://doi.org/10.1109/59.207328
[6] Kuo, C.C. (2008) A Novel Coding Scheme for Practical Economic Dispatch by Modified Particle Swarm Approach. IEEE Transactions on Power Systems, 23, 1825-1835.
https://doi.org/10.1109/TPWRS.2008.2002297
[7] Chiang, C.L. (2007) Genetic-Based Algorithm for Power Economic Load Dispatch. Iet Generation Transmission & Distribution, 1, 261-269.
https://doi.org/10.1049/iet-gtd:20060130
[8] Sinha, N., Chakrabarti, R. and Chattopadhyay, P.K. (2003) Evolutionary Programming Techniques for Economic Load Dispatch. IEEE Transactions on Evolutionary Computation, 7, 83-94.
https://doi.org/10.1109/TEVC.2002.806788
[9] Nutkani, I.U., Loh, P.C. and Blaabjerg, F. (2013) Cost-Prioritized Droop Schemes for Autonomous Microgrids. IEEE Energy Conversion Congress and Exposition, Denver, 15-19 September 2013, 1021-1025.
[10] Nutkani, I.U., Loh, P.C., Wang, P., et al. (2015) Decentralized Economic Dispatch Scheme with Online Power Reserve for Microgrids. IEEE Transactions on Smart Grid, 8.
[11] 赵睿, 章雷其, 辛焕海, 等. 微网孤岛运行的分散自趋优控制策略[J]. 电力系统自动化, 2015(21): 30-36.
[12] Olfati-Saber, R., Fax, A. and Murray, R.M. (2007) Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95, 215-233.
https://doi.org/10.1109/JPROC.2006.887293
[13] Zhang, Z. and Chow M.Y. (2012) Convergence Analysis of the Incremental Cost Consensus Algorithm under Different Communication Network Topologies in a Smart Grid. IEEE Transactions on Power Systems, 27, 1761-1768.
https://doi.org/10.1109/TPWRS.2012.2188912
[14] Yang, S., Tan, S. and Xu, J.X. (2013) Consensus Based Approach for Economic Dispatch Problem in a Smart Grid. IEEE Transactions on Power Systems, 28, 4416-4426.
https://doi.org/10.1109/TPWRS.2013.2271640
[15] 吕朋蓬, 赵晋泉, 李端超, 等. 基于信息物理系统的孤岛微网实时调度的一致性协同算法[J]. 中国电机工程学报, 2016, 36(6): 1471-1480.
[16] 陈刚, 李志勇, 赵中原. 微电网系统的分布式优化下垂控制[J]. 控制理论与应用, 2016, 33(8): 999-1006.
[17] Chen, G., Lewis, F.L., Feng, E.N., et al. (2015) Distributed Optimal Active Power Control of Multiple Generation Systems. IEEE Transactions on Industrial Electronics, 62, 1.
[18] Li, Q., Chen, F., Chen, M., et al. (2015) Agent-Based Decentralized Control Method for Islanded Microgrids. IEEE Transactions on Smart Grid, 7, 637-649.
[19] Basso, T.S. and Deblasio, R. (2004) IEEE 1547 Series of Standards: Interconnection Issues. IEEE Transactions on Power Electronics, 19, 1159-1162.
https://doi.org/10.1109/TPEL.2004.834000