基于密度函数的伪谱网格细化算法及应用
Pseudospectral Mesh Refinement Algorithm Based on Density Function and Its Application
DOI: 10.12677/DSC.2017.62005, PDF, HTML, XML,  被引量 下载: 1,602  浏览: 2,362  科研立项经费支持
作者: 王丽英:海军航空工程学院系统科学与数学研究所,山东 烟台;黄 诘:海军航空工程学院青岛分院,山东 青岛;张 刚:海军航空兵学院,辽宁 葫芦岛
关键词: 最优控制问题Radau伪谱方法网格细化密度函数Optimal Control Problems Radau Pseudospectral Method Mesh Refinement Density Function
摘要: 本文针对伪谱方法在求解不连续或非光滑最优控制问题上的缺点,提出了一种基于密度函数的伪谱网格细化算法,即利用Radau伪谱方法将原连续时间最优控制问题转化为非线性规划问题,取相邻配点的中点作为采样点,将动态约束在采样点上的残差作为近似解的误差评估准则;对于不满足求解精度要求的区间,利用轨迹曲率密度函数及其累积分布函数的性质将该区间进行细化。该算法能够捕捉到状态变量和控制变量的任意不连续性和非平滑性,通过有效的计算方式改进解的精度。仿真算例验证了算法的有效性。
Abstract: For the defects of pseudospectral method in solving discontinuous and non-smooth optimal control problems, a pesudospectral mesh refinement algorithm based on density function was proposed. The continuous-time optimal control problem was converted into nonlinear programming problems by using Radau pesudospectral method. The midpoints of adjacent collocation points were used as sample points, and the residuals of the dynamics constraints at these points were used as the assessment of approximation solution. The intervals where solution needs to be improved were divided into new subintervals by using the properties of curvature density function and corresponding cumulative distribution function. The algorithm can capture any discontinuities and smoothness in state and control variables, and improve the accuracy of the solution in a computational efficient manner. Simulation examples demonstrated the validity of the algorithm.
文章引用:王丽英, 黄诘, 张刚. 基于密度函数的伪谱网格细化算法及应用[J]. 动力系统与控制, 2017, 6(2): 35-42. https://doi.org/10.12677/DSC.2017.62005

参考文献

[1] Gong, Q., Kang, W. and Ross, I.M. (2006) A Pseudospectral Method for the Optimal Control of Constrained Feedback Linearizable Systems. IEEE Transactions on Automatic Control, 51, 1115-1129.
https://doi.org/10.1109/TAC.2006.878570
[2] Kang, W. (2010) Rate of Convergence for the Legendre Pseudo-spectral Optimal Control of Feedback Linearizable Systems. Journal of Control Theory and Applications, 8, 391-405.
https://doi.org/10.1007/s11768-010-9104-0
[3] 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[4] Guo, X. and Zhu, M. (2013) Direct Trajectory Optimization Based on a Mapped Chebyshev Pseudospectral Method. Chinese Journal of Aeronautics, 26, 401-402.
https://doi.org/10.1016/j.cja.2013.02.018
[5] 水尊师, 周军, 葛致磊. 基于高斯伪谱方法的再入飞行器预测校正制导方法研究[J]. 宇航学报, 2011, 32(6): 1249-1255.
[6] Ross, I.M. and Fahroo, F. (2004) Pseudospectral Knotting Methods for Solving Optimal Control Problems. Journal of Guidance, Control, and Dynamics, 27, 397-405.
https://doi.org/10.2514/1.3426
[7] Chowdhury, S. and Mehmani, A. (2016) Adaptive Model Refinement in Surrogate-Based Multiobjective Optimization. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-rials Conference, San Diego, 4-8 January 2016, AIAA 2016-0417.
https://doi.org/10.2514/6.2016-0417
[8] Sa-gliano, M., Mooij, E. and Theil, S. (2016) Onboard Trajectory Generation for Entry Vehicles via Adaptive Multivariate Pseudospectral Interpolation. AIAA Guidance, Navigation, and Control Conference, San Diego, 4 January 2016, AIAA 2016-2115.
https://doi.org/10.2514/6.2016-2115
[9] Zhao Y. and Tsiotras P. (2009) Mesh Refinement Using Density-Function for Solving Optimal Control Problems. Infotech and Aerospace Conference, Seattle, 6-9 April 2009, AIAA Paper 2009-2019.
https://doi.org/10.2514/6.2009-2019
[10] Zhao Y. and Tsiotras P. (2011) Density Functions for Mesh Refinement in Numerical Optimal Control. Journal of Guidance, Control, and Dynamics, 34, 271-277.
https://doi.org/10.2514/1.45852
[11] Betts, J.T. (1998) Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance, Control, and Dynamics, 21, 193-207.
https://doi.org/10.2514/2.4231