掺杂(Al3+,Ga3+)对石榴石型电解质Li7-xLa3Zr2-xTaxO12锂离子电导率的影响
Influence of Aland Ga on Lithium Ion Conductivities of Cubic Garnet-Type Li7-xLa3Zr2-xTaxO12 Electrolytes
DOI: 10.12677/MS.2017.73034, PDF, HTML, XML, 下载: 2,348  浏览: 5,456 
作者: 马丹祥:华中科技大学材料与工程学院,固态离子学实验室,湖北 武汉
关键词: 固态电解质石榴石型电解质LLZTO离子电导率Al和Ga掺杂Solid State Electrolyte Garnet-Type LLZTO Ionic Conductivity Al and Ga Doping
摘要: 为了提高Li7−xLa3Zr2−xTaxO12(LLZTO)固体电解质电导率,本文研究了Al3+和Ga3+掺杂对材料性能的影响。结果表明,掺杂Al3+Ga3+,显著提高了材料的致密度和电导率。Al-Li7−xLa3Zr2−xTaxO12(Al-LLZTO)中的铝离子同时存在于晶粒和晶界中,晶界中的铝含量是晶粒中的两倍,Al-Li6.4La3Zr1.4Ta0.6O12拥有最高的总电导率0.54 mS/cm,其激活能为0.42 eV。Li7−x−3yGayLa3Zr2−xTaxO12(Ga-LLZTO)中,铝的含量较低,镓离子同时存在于电解质的晶粒与晶界中。在锂含量相同的样品中,Ga-LLZTO的总电导率要高于Al-LLZTO,表明Ga的掺杂比Al的掺杂对LLZTO电解质的电导率提升更大。最终,我们得到总电导率最高的样品Li6.4Ga0.1La3Zr1.7Ta0.3O12,其总电导率和激活能分别为0.87 mS/cm和0.33 eV。
Abstract: To obtain highly conductive Li7−xLa3Zr2−xTaxO12 (LLZTO) electrolytes, the influence of Al and Ga on them were investigated. The Al and Ga have been demonstrated to be supervalent dopants that stabilize cubic garnetof Li7La3Zr2O12 (LLZO) electrolytes. They are also sintering-aided compositions, increasing the overall conductivity of LLZO electrolytes. The results show that all the obtained electrolytes are cubic. The densification and conductivity of the LLZTO electrolyte were improved by Al or Ga inclusion. In the Al-Li7−xLa3Zr2−xTaxO12 (Al-LLZTO) electrolytes, Al was found in the grains and grain boundaries, but the Al content in the grain boundaries is about twice of that in the grains. The overall conductivity was optimized to 0.54 mS/cm with an activation energy of 0.42 eV for the Al-Li6.4La3Zr1.4Ta0.6O12 sample. In theLi7−x−3yGayLa3Zr2−xTaxO12 (Ga-LLZTO) electrolytes, the Al in a low conent and Ga were found in grains and grain boundaries. The overall conductivities of Ga-LLZTO electrolytes were higher than that of the Al-LLZTO electrolytes with almost the same nominal Li-content. Finally, the highest overall conductivity of 0.87 mS/cm with a low activation energy of 0.33 eV was achieved for the Li6.4Ga0.1La3Zr1.7Ta0.3O12 sample.
文章引用:马丹祥. 掺杂(Al3+,Ga3+)对石榴石型电解质Li7-xLa3Zr2-xTaxO12锂离子电导率的影响[J]. 材料科学, 2017, 7(3): 243-253. https://doi.org/10.12677/MS.2017.73034

参考文献

[1] Tarascon, J.M. and Armand, M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 359.
https://doi.org/10.1038/35104644
[2] Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652-657.
https://doi.org/10.1038/451652a
[3] Takada, K. (2013) Progress and Prospective of Solid-State Lithium Batteries. Acta Materialia, 61, 759-770.
https://doi.org/10.1016/j.actamat.2012.10.034
[4] Murugan, R., Thangadurai, V. and Weppner, W. (2007) Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Cheminform, 46, 7778-7781.
[5] Thangadurai, V. and Weppner, W. (2005) Li6ALa3Zr2O12(A=Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction. Advanced Functional Materials, 15, 107-112.
https://doi.org/10.1002/adfm.200400044
[6] Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011) A Lithium Superionic Conductor. Nature Materials, 10, 682-686.
https://doi.org/10.1038/nmat3066
[7] Liu, Z.C., Fu, W.J., Payzant, E.A., et al. (2013) Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4. Journal of the American Chemical Society, 135, 975-978.
https://doi.org/10.1021/ja3110895
[8] Perng, Y.C., Cho, J., Sun, S.Y., et al. (2014) Synthesis of Ion Conducting LixAlySizO Thin Films by Atomic Layer Deposition. Journal of Materials Chemistry A, 2, 9566-9573.
https://doi.org/10.1039/C3TA14928E
[9] Sahu, G., Rangasamy, E., Li, J., et al. (2014) A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy. Journal of Materials Chemistry A, 2, 10396-10403.
https://doi.org/10.1039/c4ta01243g
[10] Seino, Y., Ota, T., Takada, K., et al. (2013) A Sulphide Lithium Super Ion Conductor Is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries. Energy & Environmental Science, 7, 627-631.
https://doi.org/10.1039/C3EE41655K
[11] Thompson, T., Wolfenstine, J., Allen, J.L., et al. (2014) Tetragonal Cubic Phase Stability in Al-Free Ta Doped Li7La3Zr2O12 (LLZO). Journal of Materials Chemistry A, 2, 13431-13436.
https://doi.org/10.1039/C4TA02099E
[12] Bernstein, N., Johannes, M.D. and Hoang, K. (2012) Origin of the Structural Phase Transition in Li7La3Zr2O12. Physical Review Letters, 109, 205702-205706.
https://doi.org/10.1103/PhysRevLett.109.205702
[13] Li, Y., Han, J.T., Wang, C.A., et al. (2012) Optimizing Li+ Conductivity in Garnet Framework. Journal of Materials Chemistry, 22, 15357-15361.
https://doi.org/10.1039/c2jm31413d
[14] Miara, L.J., Ong, S.P., Mo, Y., et al. (2013) Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12(0≤x≤0.375, 0≤y≤1)Superionic Conductor: A First Principles Investigation. Chemistry of Materials, 25, 3048-3055.
https://doi.org/10.1021/cm401232r
[15] Thompson, T., Sharafi, A., Johannes, M.D., et al. (2015) Lithium Ion Batteries: A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries. Advanced Energy Materials, 5, 1500096-1500104.
https://doi.org/10.1002/aenm.201500096
[16] Li, Y., Wang, Z., Li, C., et al. (2014) Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. Journal of Power Sources, 248, 642-646.
https://doi.org/10.1016/j.jpowsour.2013.09.140
[17] Huang, M., Mao, S., Shen, Y., et al. (2014) Preparation and Electrochemical Properties of Zr-Site Substituted Li7La3(Zr2−xMx)O12, (M=Ta, Nb) Solid Electrolytes. Journal of Power Sources, 261, 206-211.
https://doi.org/10.1016/j.jpowsour.2014.03.070
[18] Janani, N., Ramakumar, S., Kannan, S., et al. (2015) Optimization of Lithium Content and Sintering Aid for Maximized Li+ Conductivity and Density in Ta-Doped Li7La3Zr2O12. Journal of the American Ceramic Society, 98, 2039- 2046.
https://doi.org/10.1111/jace.13578
[19] Geiger, C.A., Alekseev, E., Lazic, B., et al. (2011) Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry, 50, 1089-1097.
https://doi.org/10.1021/ic101914e
[20] Bernuy-Lopez, C., Manalastas, W., Amo, J.M.L.D., et al. (2014) ChemInform Abstract: Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics. Cheminform, 45, 3610-3617.
https://doi.org/10.1002/chin.201433010
[21] Shinawi, H.E. and Janek, J. (2013) Stabilization of Cubic Lithium-Stuffed Garnets of the type “Li7La3Zr2O12” by Addition of Gallium. Journal of Power Sources, 225, 13-19.
https://doi.org/10.1016/j.jpowsour.2012.09.111
[22] Xie, H., Alonso, J.A., Li, Y., et al. (2011) Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. Cheminform, 42, 3587-3589.
https://doi.org/10.1002/chin.201144003
[23] Ren, Y., Shen, Y., Lin, Y., et al. (2015) Direct Observation of Lithium Dendrites Inside Garnet-Type Lithium-Ion Solid Electrolyte. Electrochemistry Communications, 57, 27-30.
https://doi.org/10.1016/j.elecom.2015.05.001
[24] Xin, G., Sigle, W. and Maier, J. (2010) Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity. Journal of the American Ceramic Society, 86, 77-87.
[25] Tietz, F., Wegener, T., Gerhards, M.T., et al. (2013) Synthesis and Raman Micro-Spectroscopy Investigation of Li7La3Zr2O12. Solid State Ionics, 230, 77-82.
https://doi.org/10.1016/j.ssi.2012.10.021
[26] Deviannapoorani, C., Dhivya, L., Ramakumar, S., et al. (2013) Lithium Ion Transport Properties of High Conductive Tellurium Substituted Li7La3Zr2O12, Cubic Lithium Garnets. Journal of Power Sources, 240, 18-25.
https://doi.org/10.1016/j.jpowsour.2013.03.166
[27] Liu, K., Ma, J.T. and Wang, C.A. (2014) Excess Lithium Salt Functions More than Compensating for Lithium Loss When Synthesizing Li6.5La3Ta0.5Zr1.5O12, in Alumina Crucible. Journal of Power Sources, 260, 109-114.
https://doi.org/10.1016/j.jpowsour.2014.02.065
[28] Wang, D., Zhong, G., Pang, W.K., et al. (2015) Toward Understanding the Lithium Transport Mechanism in Garnet-Type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chemistry of Materials, 27, 150918180839005.
https://doi.org/10.1021/acs.chemmater.5b02429
[29] Adams, S. and Rao, R.P. (2011) Ion Transport and Phase Transition in Li7-xLa3(Zr2-xMx)O12(M = Ta, Nb, x = 0, 0.25). Journal of Materials Chemistry, 22, 1426-1434.
https://doi.org/10.1039/C1JM14588F
[30] Deviannapoorani, C., Dhivya, L., Ramakumar, S., et al. (2013) Lithium ion Transport Properties of High Conductive Tellurium Substituted Li7La3Zr2O12, Cubic Lithium Garnets. Journal of Power Sources, 240, 18-25.
https://doi.org/10.1016/j.jpowsour.2013.03.166
[31] Armstrong, R.D., Bulmer, R.S. and Dickinson, T. (1973) Some Factors Responsible for High Ionic Conductivity in Simple Solid Compounds. Journal of Solid State Chemistry, 8, 219-228.
https://doi.org/10.1016/0022-4596(73)90088-1
[32] Ahmad, M.M. (2015) Estimation of the Concentration and Mobility of Mobile Li+ in the Cubic Garnet-Type Li7La3Zr2O12. RSC Advances, 5, 25824-25829.
https://doi.org/10.1039/C4RA15972A