微藻磁分离进展研究
Progress in Magnetic Separation of Microalgae
DOI: 10.12677/AEP.2017.72024, PDF, HTML, XML, 下载: 1,872  浏览: 2,839  科研立项经费支持
作者: 刘春蕾, 赵方超, 周雪飞, 张亚雷:同济大学环境科学与工程学院污染控制与资源化国家重点实验室,上海;苏益明:同济大学环境科学与工程学院污染控制与资源化国家重点实验室,上海;同济大学土木工程学院博士后流动站,上海
关键词: 微藻磁分离磁性纳米氧化铁材料改性Microalgae Magnetic Separation Magnetic Nano-Iron Oxide Material Modification
摘要: 微藻能源是理想的可再生能源,能部分替代化石能源。然而其开发利用受微藻细胞小、浓度低导致的采收困难、采收成本高的限制。低成本、高效率地将微藻与水体有效分离是保障微藻推广利用的关键。本文分析了传统微藻分离技术存在的难点及研究趋势,讨论了国内外微藻磁分离技术研究现状及存在问题。为微藻水处理、资源回收等领域的进一步应用提供一定的基础理论研究保障。
Abstract: Microalgae is an ideal renewable energy source that can partially replace fossil fuels. However, the difficulties and high cost of microalgae harvesting which caused by small cell and low concentration are the main constrains of microalgae utilization and further application. Hence, cost-effec- tive separation of microalgae from water body becomes the key issue to microalgae utilization. This paper analyzed the difficulties and research trends of traditional microalgae separation technology, discussed the current problems of microalgae magnetic separation technology, and further provided a theoretical basis for microalgae water treatment, resource recovery and its other application.
文章引用:刘春蕾, 赵方超, 周雪飞, 张亚雷, 苏益明. 微藻磁分离进展研究[J]. 环境保护前沿, 2017, 7(2): 164-169. https://doi.org/10.12677/AEP.2017.72024

参考文献

[1] Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
[2] Greenwell, H.C., et al. (2010) Placing Microalgae on the Biofuels Priority List: A Review of the Technological Challenges. Journal of the Royal Society Interface, 7, 703-726.
https://doi.org/10.1098/rsif.2009.0322
[3] Christenson, L. and R. Sims (2011) Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts. Biotechnology Advances, 29, 686-702.
[4] Weschler, M.K., et al. (2014) Process Energy Comparison for the Production and Harvesting of Algal Biomass as a Biofuel Feedstock. Bioresource Technology, 153, 108-115.
[5] Milledge, J.J. and S. Heaven (2012) A Review of the Harvesting of Micro-Algae for Biofuel Production. Reviews in Environmental Science and Bio/Technology, 12, 165-178.
https://doi.org/10.1007/s11157-012-9301-z
[6] Uduman, N., et al. (2010) Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels. Journal of Renewable & Sustainable Energy, 2, 389-392.
https://doi.org/10.1063/1.3294480
[7] Heasman, M.P., et al. (2002) Development of Extended Shelf-Life Microalgae Concentrate Diets Harvested by Centrifugation for Bivalve Molluscs—A Summary. Aquaculture Research, 31, 637-659.
[8] Coward, T., J.G.M. Lee, and G.S. Caldwell (2014) Harvesting Microalgae by CTAB-Aided Foam Flotation Increases Lipid Recovery and Improves Fatty Acid Methyl Ester Characteristics. Biomass & Bioenergy, 67, 354-362.
[9] Yap, R.K.L., et al. (2014) Hydrophobically-Associating Cationic Polymers as Micro-Bubble Surface Modifiers in Dissolved Air Flotation for Cyanobacteria Cell Separation. Water Research, 61, 253-262.
[10] Zhang, X., et al. (2010) Harvesting Algal Biomass for Biofuels Using Ultrafiltration Membranes. Bioresource Technology, 101, 5297-5304.
[11] Danquah, M.K., et al. (2009) Dewatering of Microalgal Culture for Biodiesel Production: Exploring Polymer Flocculation and Tangential Flow Filtration. Journal of Chemical Technology & Biotechnology, 84, 1078-1083.
https://doi.org/10.1002/jctb.2137
[12] 胡一茹. 微藻细胞的磁性絮凝与规模化采收[D]: [硕士学位论文]. 北京: 中国科学院大学, 2014.
[13] 陈继伟. 疏水吸附与磁絮凝分离盐藻过程及作用机制[D]: [硕士学位论文]. 广州: 华南理工大学, 2006.
[14] 邹婧伟. 顺磁性核壳纳米催化剂的制备及微藻油转酯化研究[D]: [硕士学位论文]. 青岛: 中国石油大学, 2013.
[15] Cerff, M., et al. (2012) Harvesting Fresh Water and Marine Algae by Magnetic Separation: Screening of Separation Parameters and High Gradient Magnetic Filtration. Bioresource Technology, 118, 289-295.
[16] Wang S K, Wang F, Hu Y R, et al. (2013) Magnetic Flocculant for High Efficiency Harvesting of Microalgal Cells. ACS Applied Materials & Interfaces, 6, 109-115.
https://doi.org/10.1021/am404764n
[17] Ge, S., et al. (2015) Heteroaggregation between PEI-Coated Magnetic Nanoparticles and Algae: Effect of Particle Size on Algal Harvesting Efficiency. ACS Applied Materials & Interfaces, 7, 6102-6108.
https://doi.org/10.1021/acsami.5b00572
[18] de Montferrand, C., et al. (2013) Iron Oxide Nanoparticles with Sizes, Shapes and Compositions Resulting in Different Magnetization Signatures as Potential Labels for Multiparametric Detection. Acta Biomaterialia, 9, 6150-6157.
[19] Gao, G., et al. (2010) Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes. Crystal Growth & Design, 10, 2888-2894.
https://doi.org/10.1021/cg900920q
[20] Shavel, A., et al. (2007) Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes. Advanced Functional Materials, 17, 3870-3876.
https://doi.org/10.1002/adfm.200700494
[21] 敖卓. 胶体间相互作用的研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2011.
[22] Ge, S., et al. (2015) Influences of Surface Coating, UV Irradiation and Magnetic Field on the Algae Removal Using Magnetite Nanoparticles. Environmental Science & Technology, 49, 1190-1196.
https://doi.org/10.1021/es5049573
[23] Fakhrullin, R.F., et al. (2010) Interfacing Living Unicellular Algae Cells with Biocompatible Polyelectrolyte-Stabilised Magnetic Nanoparticles. Macromolecular Bioscience, 10, 1257-1264.
https://doi.org/10.1002/mabi.201000161
[24] Lim, J.K., et al. (2012) Rapid Magnetophoretic Separation of Microalgae. Small, 8, 1683-1692.
https://doi.org/10.1002/smll.201102400
[25] Adeleye, A.S. and A.A. Keller (2014) Long-Term Colloidal Stability and Metal Leaching of Single Wall Carbon Nanotubes: Effect of Temperature and Extracellular Polymeric Substances. Water Research, 49, 236-250.
[26] Adeleye, A.S., et al. (2014) Influence of Extracellular Polymeric Substances on the Long-Term Fate, Dissolution, and Speciation of Copper-Based Nanoparticles. Environmental Science & Technology, 48, 12561-12568.
https://doi.org/10.1021/es5033426
[27] Sheng, A., et al. (2016) Impact of Proteins on Aggregation Kinetics and Adsorption Ability of Hematite Nanoparticles in Aqueous Dispersions. Environmental Science & Technology, 50, 2228-2235.
https://doi.org/10.1021/acs.est.5b05298