1330号台风“海燕”路径北翘的原因及其对华南的影响
Reason of No. 1330 Typhoon “Haiyan” Path North and the Influence of the Typhoon on South China
摘要: 利用常规气象观测资料、间隔为6小时的1˚ × 1˚NCEP再分析资料和卫星云图,对1330号“海燕”台风路径北翘东移的原因,以及其对华南地区所带来的强降水过程进行分析。结果表明:台风的路径和西太平洋副高的强度及位置演变密切相关,副高西伸加强时,台风位于副高南侧,受东风气流引导向西行,10日起,台风位于海南省南部,受冷空气影响,副高减弱东退,台风逐渐调整至副高西侧,10日20时,台风受南风气流引导而转向北行。台风登陆前,受台风倒槽影响,我国华南地区有充沛的水汽和强烈的上升运动,降水与850 hPa涡度场、散度场有较好的对应关系,强降水过程中有明显的水汽输送带和水汽辐合与动力条件相配合。台风登陆后,螺旋雨带降水逐渐减弱,广西东南部云系再生,从而产生又一波降水过程。
Abstract: Based on the conventional meteorological observation data and the 1˚ × 1˚ NCEP reanalysis data and satellite cloud images with a time interval of 6 hours, the reason for the eastward migration of typhoon trail of “Haiyan” No. 1330 was analyzed. And the impact of typhoon in southern China which led to strong precipitation was also analyzed. The results show that the typhoon path is closely related to the intensity and position evolution of the western Pacific subtropical high. When the subtropical high is strengthened, the typhoon is located on the south side of the subtropical high, guided by the east wind flow westward. From 10 onwards, the typhoon is located in the south of Hainan Province, the typhoon is affected by cold air, subtropical high weakened eastward, and the typhoon gradually adjusts to the west side of the subtropical high. At 20 o’clock on the 10th, the typhoon was led by the south wind and turned northbound. Before typhoon landing, by the typhoon inverted trough, China’s southern region has abundant water vapor and a strong upward movement; precipitation and 850 hPa vorticity field, divergence field has a good correspondence. During the heavy rainfall, there is obvious water vapor conveyor belt, water vapor convergence and dynamic condition. When typhoon landed, the spiral rain gradually reduced and the southeastern Guangxi cloud regenerated, resulting in another wave of precipitation process.
文章引用:蒋雅婷. 1330号台风“海燕”路径北翘的原因及其对华南的影响[J]. 地球科学前沿, 2017, 7(2): 232-246. https://doi.org/10.12677/AG.2017.72025

参考文献

[1] Carr, L.E. and Elsberry, R.L. (1990) Observational Evidence for Predictions of tropical Cyclone Propagation Relative to Steering. Journal of the Atmospheric Sciences, 47, 542-546.
https://doi.org/10.1175/1520-0469(1990)047<0542:OEFPOT>2.0.CO;2
[2] Huang, Y.H., Wu, C.C. and Wang, Y.Q. (2011) The Influence of Island Topography on Typhoon Track Deflection. Monthly Weather Review, 139, 1708-1727.
https://doi.org/10.1175/2011MWR3560.1
[3] Jian, G.J. and Wu, C.C. (2008) A Numerical Study of the Track Deflection of Super-Typhoon Haitang (2005) Prior to Its Landfall in Taiwan. Monthly Weather Review, 136, 598-615.
https://doi.org/10.1175/2007MWR2134.1
[4] Lin, Y.L., Chen, S.Y., Hill, C.M., et al. (2005) Control Parameters for the Influence of a Mesoscale Mountain Range on Cyclone Track Continuity and Deflection. Journal of the Atmospheric Sciences, 62, 1849-1866.
https://doi.org/10.1175/JAS3439.1
[5] De Maria, M. and Chan, J.C. (1984) Comments on “A Numerical Study of the Interactions between Two Tropical Cyclones”. Monthly Weather Review, 112, 1643-1645.
https://doi.org/10.1175/1520-0493(1984)112<1643:CONSOT>2.0.CO;2
[6] 许爱华, 陈涛, 朱光宇, 等. “泰利”台风低压大暴雨过程分析和数值模拟试验[J]. 气象与减灾研究, 2006, 29(2): 25-31.
[7] 姜丽萍, 夏冠聪, 尤红, 等. “珍珠”台风强度及路径异常的分析[J]. 台湾海峡, 2008, 27(1): 124-128.
[8] 尹洁, 金米娜, 冯开明, 等. 三个进入江西的台风路径和暴雨形成机制对比分析[J]. 气象与减灾研究, 2007, 30(2): 18-22.
[9] 沈新勇, 毕明玉, 张玲, 刘佳. 中尺度对流系统对台风“风神”移动路径影响的研究[J]. 气象学报, 2012, 70(6): 1173-1187.
[10] 许晓林, 谭燕, 余晖, 王晓峰. 0806号台风“风神”过程分析及预报精度评估[J]. 大气科学研究与应用, 2010(1): 68-80.
[11] 夏冠聪, 曹文博, 姜丽萍. 0806号台风“风神”引起的特大暴雨过程分析[C]//中国气象学会台风委员会. 第26届中国气象学会年会热带气旋科学研讨会分会场论文集. 上海: 中国气象局上海台风研究所, 2009: 8.
[12] 李彩玲, 寿绍文, 陈艺芳. 台风“风神”暴雨落区的诊断分析[J]. 热带气象学报, 2010, 26(2): 250-256.
[13] 徐金霞, 刘奇俊, 宋振鑫, 等. 台风“莫拉克”降水观测与云物理特征的模拟研究[J]. 成都信息工程学院学报, 2012, 27(3): 292-301.
[14] 黄文根, 邓北胜, 熊延南. 一次台风暴雨的初步分析[J]. 应用气象学报, 1997, 8(2): 247-251.