新育种苦瓜调控3T3-L1前脂肪细胞之细胞周期停滞之影响
Effects of New Variety Selection of Bitter Melon on Modulation of Cell Cycle in 3T3-L1 Preadipocytes
DOI: 10.12677/HJAS.2017.72016, PDF, HTML, XML, 下载: 1,485  浏览: 2,086 
作者: 张维棠, 邱天惠:中山医学大学营养学系,台湾 台中;刘程炜:明道大学精致农业学系,台湾 彰化;徐庆琳*:中山医学大学营养学系,台湾 台中;中山医学大学附设医院营养科,台湾 台中
关键词: 3T3-L1前脂肪细胞新育种苦瓜细胞周期3T3-L1 Preadipocytes Bitter Melon Cell Cycle
摘要: 近年来由于饮食与生活型态改变,使得肥胖盛行率在过去数十年间以倍数方式急遽增加。苦瓜(Momordica charantia)已知含有三萜类、酚类物质与共轭亚麻油酸,过去已被长期使用作为治疗第二型糖尿病与发炎反应上,然而利用新育种苦瓜探讨3T3-L1前脂肪细胞对细胞周期调控之影响,目前仍缺乏相关文献资料。因此,本研究利用三种新育种苦瓜 (苹果苦瓜、苦瓜明道选72与苦瓜冲绳选33) 之果肉与种子,分别以水、甲醇、乙醇、丙酮与乙酸乙酯所制备之萃取物,探讨三种新育种苦瓜对3T3-L1前脂肪细胞之细胞周期调控之影响。结果显示,在30种苦瓜萃取物中,以苹果苦瓜种子水萃取物具有最佳抑制3T3-L1前脂肪细胞生长之作用,在细胞周期分析结果显示,其亦可发现3T3-L1前脂肪细胞之细胞周期停滞于G1期。在分子机制结果显示,苹果苦瓜种子水萃取物可藉由增加p-p53、p27与p18之蛋白表现,进而抑制CDK2、CDK6、cyclin D1与p-Rb之蛋白表现。综合上述结果显示,苹果苦瓜种子水萃取物可藉由抑制3T3-L1前脂肪细胞之增生,并使细胞周期停滞于G1期。
Abstract: The obesity prevalence has been increasing significantly over the past few decades, which is due to change lifestyle and dietary pattern. Bitter melon contains many active ingredients, including triterpenoids, phenolics compounds, and conjugated linolenic acids. It was widely used as herbal medicine for anti-diabetes and anti-inflammatory activities. However, the effects of new variety selection of bitter melon on modulation of cell cycle in 3T3-L1 preadipocytes remain unclear. Therefore, the aim of this study was investigate the effects of different solvents (water, methanol, ethanol, acetone, and ethyl acetate) extracts from the fruit and seed of bitter melon (Momordica charantia, Momordica charantia MDS72, and Momordica charantia ONS33) on cell cycle arrest in 3T3-L1 preadipocytes. Of the 30 bitter melon extracts tested, water extract from the seed of Momordica charantia (WESMC) exhibited the strongest inhibited cell growth in 3T3-L1 preadipocytes. In cell cycle analysis, WESMC caused cell cycle arrest at the G1 phase in 3T3-L1 preadipocytes. In the molecular mechanisms, WESMC significantly increased the protein expressions of p-p53, p27, and p18, and decreased the protein expressions of CDK2, CDK6, cyclin D1, and p-Rb. These results demonstrate that WESMC could inhibit cell growth and cell cycle arrest at G1 phase in 3T3-L1 preadipocytes.
文章引用:张维棠, 刘程炜, 邱天惠, 徐庆琳. 新育种苦瓜调控3T3-L1前脂肪细胞之细胞周期停滞之影响[J]. 农业科学, 2017, 7(2): 128-139. https://doi.org/10.12677/HJAS.2017.72016

参考文献

[1] Mariela, G. and Itamar, R. (2011) Present and Future: Pharmacologic Treatment of Obesity. Journal of Obesity, 2011, 636181.
[2] Yeh, C.J., Chang, H.Y. and Pan, W.H. (2011) Time Trend of Obesity, the Metabolic Syndrome and Related Dietary Pattern in Taiwan: From NAHSIT 1993-1996 to NAHSIT 2005-2008. Asia Pacific Journal of Clinical Nutrition, 20, 292-300.
[3] Lawson, M.L., Kirk, S., Mitchell, T., Chen, M.K., Loux, T.J., Daniels, S.R., Harmon, C.M., Clements, R.H., Garcia, V.F. and Inge, T.H. (2006) Pediatric Bariatric Study Group. One-Year Outcomes of Roux-en-Y Gastric Bypass for Morbidly Obese Adolescents: A Multicenter Study from the Pediatric Bariatric Study Group. Journal of Pediatric Surgery, 41, 137-143.
https://doi.org/10.1016/j.jpedsurg.2005.10.017
[4] Nadler, E.P., Youn, H.A., Ren, C.J. and Fielding, G.A. (2008) An Update on 73 US Obese Pediatric Patients Treated with Laparoscopic Adjustable Gastric Banding: Comorbidity Resolution and Compliance Data. Journal of Pediatric Surgery, 43, 141-146.
https://doi.org/10.1016/j.jpedsurg.2007.09.035
[5] Bobowicz, M., Lehmann, A., Orlowski, M., Lech, P. and Michalik, M. (2011) Preliminary Outcomes 1 Year after Laparoscopic Sleeve Gastrectomy Based on Bariatric Analysis and Reporting Outcome System (BAROS). Obesity Surgery, 21, 1843-1848.
https://doi.org/10.1007/s11695-011-0403-4
[6] Dietrich, M.O. and Horvath, T.L. (2012) Limitations in Anti-Obesity Drug Development: The Critical Role of Hunger-Promoting Neurons. Nature Reviews. Drug Discovery, 11, 675-691.
https://doi.org/10.1038/nrd3739
[7] Chuang, C.Y., Hsu, C., Chao, C.Y., Wein, Y.S., Kuo, Y.H. and Huang, C.J. (2006) Fractionation and Identification of 9c, 11t, 13t-Conjugated Linolenic Acid as an Activator of PPAR Alpha in Bitter Gourd (Momordica charantia L.). Journal of Biomedical Science, 13, 763-772.
https://doi.org/10.1007/s11373-006-9109-3
[8] Krawinkel, M.B. and Keding, G.B. (2006) Bitter Gourd (Momordica charantia): A Dietary Approach to Hyperglycemia. Nutrition Reviews, 64, 331-337.
https://doi.org/10.1111/j.1753-4887.2006.tb00217.x
[9] Chang, C.I., Tseng, H.I., Liao, Y.W., Yen, C.H., Chen, T.M., Lin, C.C. and Cheng, H.L. (2011) In Vivo and In Vitro Studies to Identify the Hypoglycemic Constituents of Momordica charantia Wild Variant WB24. Food Chemistry, 125, 521-528.
https://doi.org/10.1016/j.foodchem.2010.09.043
[10] Hsu, C., Hsieh, C.L., Kuo, Y.H. and Huang, C.J. (2011) Isolation and Identification of Cucurbitane-Type Triterpenoids with Partial Agonist/Antagonist Potential for Estrogen Receptors from Momordica charantia. Journal of Agricultural and Food Chemistry, 59, 4553-4561.
https://doi.org/10.1021/jf200418g
[11] Klomann, S.D., Mueller, A.S., Pallauf, J. and Krawinkel, M.B. (2010) Antidiabetic Effects of Bitter Gourd Extracts in Insulin-Resistant db/db Mice. The British Journal of Nutrition, 104, 1613-1620.
https://doi.org/10.1017/S0007114510002680
[12] Lii, C.K., Chen, H.W., Yun, W.T. and Liu, K.L. (2009) Suppressive Effects of Wild Bitter Gourd (Momordica charantia Linn. var. abbreviata ser.) Fruit Extracts on Inflammatory Responses in RAW 264.7 Macrophages. Journal of Ethnopharmacology, 122, 227-233.
https://doi.org/10.1016/j.jep.2009.01.028
[13] Cheng, H.L., Kuo, C.Y., Liao, Y.W. and Lin, C.C. (2012) EMCD, a Hypoglycemic Triterpene Isolated from Momordica charantia Wild Variant, Attenuates TNF-α-Induced Inflammation in FL83B Cells in an AMP-Activated Protein Kinase-Independent Manner. European Journal of Pharmacology, 689, 241-248.
https://doi.org/10.1016/j.ejphar.2012.05.033
[14] Matsui, S., Yamane, T., Takita, T., Oishi, Y. and Kobayashi-Hattori, K. (2013) The Hypocholesterolemic Activity of Momordica charantia Fruit Is Mediated by the Altered Cholesterol- and Bile Acid-Regulating Gene Expression in Rat Liver. Nutrition Research, 33, 580-585.
https://doi.org/10.1016/j.nutres.2013.05.002
[15] Li, C.J., Tsang, S.F., Tsai, C.H., Tsai, H.Y., Chyuan, J.H. and Hsu, H.Y. (2012) Momordica charantia Extract Induces Apoptosis in Human Cancer Cells through Caspase- and Mitochondria-Dependent Pathways. Evidence-Based Complementary and Alternative Medicine, 2012, Article ID: 261971.
https://doi.org/10.1155/2012/261971
[16] Tabata, K., Hamano, A., Akihisa, T. and Suzuki, T. (2012) Kuguaglycoside C, a Constituent of Momordica charantia, Induces Caspase-Independent Cell Death of Neuroblastoma Cells. Cancer Science, 103, 2153-2158.
https://doi.org/10.1111/cas.12021
[17] Nerurkar, P.V., Lee, Y.K. and Nerurkar, V.R. (2010) Momordica charantia (Bitter Melon) Inhibits Primary Human Adipocyte Differentiation by Modulating Adipogenic Genes. BMC Complementary and Alternative Medicine, 10, 34.
https://doi.org/10.1186/1472-6882-10-34
[18] Hsu, C.L., Fang, S.C., Liu, C.W. and Chen, Y.F. (2013) Inhibitory Effects of New Varieties of Bitter Melon on Lipopolysaccharide-Stimulated Inflammatory Response in RAW 264.7 Cells. Journal of Functional Foods, 5, 1829-1837.
https://doi.org/10.1016/j.jff.2013.09.002
[19] Wang, Y.W. and Jones, P.J. (2004) Conjugated Linoleic Acid and Obesity Control: Efficacy and Mechanisms. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 28, 941-955.
https://doi.org/10.1038/sj.ijo.0802641
[20] Zhang, J.W., Tang, Q.Q., Vinson, C. and Lane, M.D. (2004) Dominant-Negative C/EBP Disrupts Mitotic Clonal Expansion and Differentiation of 3T3-L1 Preadipocytes. Proceedings of the National Academy of Sciences of the United States of America, 101, 43-47.
https://doi.org/10.1073/pnas.0307229101
[21] Hung, P.F., Wu, B.T., Chen, H.C., Chen, Y.H., Chen, C.L., Wu, M.H., Liu, H.C., Lee, M.J. and Kao, Y.H. (2005) Antimitogenic Effect of Green Tea (-)-Epigallocatechin Gallate on 3T3-L1 Preadipocytes Depends on the ERK and Cdk2 Pathways. American Journal of Physiology Cell Physiology, 288, C1094-C1108.
https://doi.org/10.1152/ajpcell.00569.2004
[22] Sahib, N.G., Hamid, A.A., Kitts, D., Purnama, M., Saari, N. and Abas, F. (2011) The Effects of Morinda citrifolia, Momordica charantia and Centella asiatica Extracts on Lipoprotein Lipase and 3T3-L1 Preadipocytes. Journal of Food Biochemistry, 35, 1186-1205.
https://doi.org/10.1111/j.1745-4514.2010.00444.x
[23] Murakami, T., Emoto, A., Matsuda, H. and Yoshikawa, M. (2001) Medicinal Foodstuffs. XXI. Structures of New Cucurbitane-Type Triterpene Glycosides, Goyaglycosidesa, -b, -c, -d, -e, -f, -g, and -h, and New Oleanane-Type Triterpene Saponins, Goyasaponins I, II, and III, from the Fresh Fruit of Japanese Momordica charantia. Chemical & Pharmaceutical Bulletin, 49, 54-63.
https://doi.org/10.1248/cpb.49.54
[24] Chanchai, M. (2003) Analysis of Charantin from Momordica charantia L. MS Thesis, Faculty of Graduate Studies, Mahidol University, Bangok.
[25] Jesada, P., Sutawadee, C., Motonobu, G., Weena, J., Mitsuru, S. and Artiwan, S. (2007) New Approach for Extraction of Charantin from Momordica charantia with Pressurized Liquid Extraction. Separation and Purification Technology, 52, 416-422.
https://doi.org/10.1016/j.seppur.2005.11.037
[26] Horax, R., Hettiarachchy, N. and Chen, P. (2010) Extraction, Quantification, and Antioxidant Activities of Phenolics from Pericarp and Seeds of Bitter Melons (Momordica charantia) Harvested at Three Maturity Stages (Immature, Mature, and Ripe). Journal of Agricultural and Food Chemistry, 58, 4428-4433.
https://doi.org/10.1021/jf9029578
[27] Pawar, R.S., Tamta, H., Ma, J., Krynitsky, A.J., Grundel, E., Wamer, W.G. and Rader, J.I. (2013) Updates on Chemical and Biological Research on Botanical Ingredients in Dietary Supplements. Analytical and Bioanalytical Chemistry, 405, 4373-4384.
https://doi.org/10.1007/s00216-012-6691-2
[28] Popovich, D.G., Li, L. and Zhang, W. (2010) Bitter Melon (Momordica charantia) Triterpenoid Extract Reduces Preadipocyte Viability, Lipid Accumulation and Adiponectin Expression in 3T3-L1 Cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48, 1619-1626.
https://doi.org/10.1016/j.fct.2010.03.035
[29] Popovich, D.G., Li, L. and Zhang, W. (2011) Momordica charantia Seed Extract Reduces Preadipocyte Viability, Affects Lactate Dehydrogenase Release, and Lipid Accumulation in 3T3-L1 Cells. Journal of Medicinal Food, 14, 201- 208.
https://doi.org/10.1089/jmf.2010.1150
[30] Hsu, C.L., Lo, W.H. and Yen, G.C. (2007) Gallic Acid Induces Apoptosis in 3T3-L1 Preadipocytes via a Fas- and Mitochondria-Mediated Pathway. Journal of Agricultural and Food Chemistry, 55, 7359-7365.
https://doi.org/10.1021/jf071223c
[31] Hsu, C.L., Lin, Y.J., Ho, C.T. and Yen, G.C. (2012) Inhibitory Effects of Garcinol and Pterostilbene on Cell Proliferation and Adipogenesis in 3T3-L1 Cells. Food & Function, 3, 49-57.
https://doi.org/10.1039/C1FO10209E
[32] Chou, Y.C., Su, H.M., Lai, T.W., Chyuan, J.H. and Chao, P.M. (2012) cis-9, trans-11, trans-13-Conjugated Linolenic Acid Induces Apoptosis and Sustained ERK Phosphorylation in 3T3-L1 Preadipocytes. Nutrition, 28, 803-811.
https://doi.org/10.1016/j.nut.2011.11.019
[33] Alenzi, F.Q. (2004) Links between Apoptosis, Proliferation and the Cell Cycle. British Journal of Biomedical Science, 61, 99-102.
https://doi.org/10.1080/09674845.2004.11732652
[34] Donjerkovic, D. and Scott, D.W. (2000) Regulation of the G1 Phase of the Mammalian Cell Cycle. Cell Research, 10, 1-16.
https://doi.org/10.1038/sj.cr.7290031
[35] Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V. and Kastan, M.B. (1992) Wild-Type p53 Is a Cell Cycle Checkpoint Determinant Following Irradiation. Proceedings of the National Academy of Sciences of the United States of America, 89, 7491-7495
https://doi.org/10.1073/pnas.89.16.7491
[36] Gregorc, V., Ludovini, V., Pistola, L.,Darwish, S., Floriani, I., Bellezza, G., Sidoni, A., Cavaliere, A., Scheibel, M., De Angelis, V., Bucciarelli, E. and Tonato, M. (2003) Relevance of p53, bcl-2 and Rb Expression on Resistance to Cisplatin-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. Lung Cancer, 39, 41-48.
https://doi.org/10.1016/S0169-5002(02)00391-4
[37] Raghvan, D. (2003) Molecular Targeting and Pharmacogenomics in the Management of Advanced Bladder Cancer. Cancer, 97, 2083-2089.
https://doi.org/10.1002/cncr.11281
[38] Pitchakarn, P., Suzuki, S., Ogawa, K., Pompimon, W., Takahashi, S., Asamoto, M., Limtrakul, P. and Shirai, T. (2011) Induction of G1 Arrest and Apoptosis in Androgen-Dependent Human Prostate Cancer by Kuguacin J, A Triterpenoid from Momordica charantia Leaf. Cancer Letters, 306, 142-150.
https://doi.org/10.1016/j.canlet.2011.02.041