三种能源植物的遗传转化研究现状
The Research Status of Genetic Transformation in Three Kinds of Energy Plants
DOI: 10.12677/HJAS.2017.72022, PDF, HTML, XML, 下载: 1,598  浏览: 3,806  国家自然科学基金支持
作者: 杜 浩*, 张 彬, 潘锋杰:江苏大学环境与安全工程学院,江苏 镇江;杜道林, 黄 萍:江苏大学环境与安全工程学院,江苏 镇江;江苏大学农业工程研究院,江苏 镇江;庄义庆:镇江农业科学研究所,江苏 镇江
关键词: 柳枝稷甜高粱甘蔗遗传转化开发利用发展前景Switchgrass Sweet Sorghum Sugarcane Genetic Transformation Development and Utilization Development Prospects
摘要: 传统能源日益枯竭,亟须可再生能源的开发和利用,能源植物经过初步加工,能够作为发酵酒精的工业原料。因此,这种具有生长迅速,来源广泛和二氧化碳零排放等优点的新能源成为目前国内外研究的热点。现代基因工程方法可以对能源植物进行定向改良,以提高其抗逆性和产量等。本文主要针对柳枝稷、甜高粱和甘蔗三种常见的能源植物的开发利用、遗传转化现状及其发展前景进行综述和讨论。
Abstract: With the depletion of traditional energies, the renewable energy should be developed and utilized. After preliminary processing, the energy plants could be used as raw materials for industrial fermentation of alcohol. Therefore, the new energy plants, with advantages of rapid growth and rich resources as well as zero carbon emissions, are becoming hot spots of research at home and abroad. Modern genetic engineering method can be directionally used to improve the resistance and yield of energy plants. In this paper, the development & utilization as well as its genetic transformation & development prospect of three kinds of energy plants-switchgrass, Sweet sorghum and Sugarcane were reviewed and discussed.
文章引用:杜浩, 张彬, 杜道林, 潘锋杰, 黄萍, 庄义庆. 三种能源植物的遗传转化研究现状[J]. 农业科学, 2017, 7(2): 171-178. https://doi.org/10.12677/HJAS.2017.72022

参考文献

[1] 陈英明, 肖波, 常杰, 等. 能源植物的资源开发与应用[J]. 氨基酸和生物资源, 2005, 27(4): 1-5.
[2] 张卫明, 史劲松, 顾龚平. 生物质能的利用和能源植物的开发[J]. 南京师大学报(自然科学版), 2007, 30(3): 68-74.
[3] Hoogwijk, M., Faaij, A., Broek, R.V.D., et al. (2003) Exploration of the Ranges of the Global Potential of Biomass for Energy. Biomass and Bioenergy, 25, 119-133.
https://doi.org/10.1016/S0961-9534(02)00191-5
[4] 郭月玲, 江海东, 张磊, 等. 我国主要能源植物及其开发利用的现状与前景[J]. 浙江农业科学, 2009, 1(6): 1057-1062.
[5] 李军, 吴平治, 李美茹, 等. 能源植物的研究进展及其发展趋势[J]. 自然杂志, 2007, 29(1): 21-25.
[6] 吴国江, 刘杰, 娄治平, 等. 能源植物的研究现状及发展建议[J]. 中国科学院院刊, 2006, 21(1): 53-57.
[7] Tolmac, D., Prulovic, S., Lambic, M., et al. (2014) Global Trends on Production and Utilization of Biodiesel. Energy Sources Part B-Economics Planning and Policy, 9, 130-139.
https://doi.org/10.1080/15567241003773226
[8] Yang, Z., Sarkar, M., Kumar, A., et al. (2014) Effects of Torrefaction and Densification on Switchgrass Pyrolysis Products. Bioresource Technology, 174, 266-273.
https://doi.org/10.1016/j.biortech.2014.10.032
[9] Jage,r H.I., Baskaran, L.M., Brandt, C.C., et al. (2010) Empirical Geographic Modeling of Switchgrass Yields in the United States. GCB Bioenergy, 2, 248-257.
https://doi.org/10.1111/j.1757-1707.2010.01059.x
[10] McLaughlin, S.B. and Kszos, L.A. (2005) Development of Switchgrass(Panicum virgatum L.) as a Bioenergy Feedstock in the United States. Biomass and Bioenergy, 28, 515-535.
https://doi.org/10.1016/j.biombioe.2004.05.006
[11] Denchev, P.D. and Conger, B.V. (1994) Plant Regeneraton from Callus Cultures of Switchgrass. Crop science, 34, 1623-1627.
https://doi.org/10.2135/cropsci1994.0011183X003400060036x
[12] Song, G., Walworth, A. and Hancock, J.F. (2012) Factors Influencing Agrobacterium-Mediated Transformation of Switchgrass Cultivars. Plant Cell Tissue and Organ Culture, 108, 445-453.
https://doi.org/10.1007/s11240-011-0056-y
[13] Burris, J.N., Mann, D.G.J., Joyce, B.L., et al. (2009) An Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.). BioEnergy Research, 2, 267-274.
https://doi.org/10.1007/s12155-009-9048-8
[14] Nageswara-Rao, M., Soneji, J.R., Kwit, C., et al. (2013) Advances in Bio-technology and Genomics of Switchgrass. Biotechnology for Biofuels, 6, 1-15.
[15] Casler, M.D., Tobias, C.M. and Kaeppler, S.M., et al. (2011) The Switchgrass Genome: Tools and Strategies. The Plant Genome, 4, 273-282.
https://doi.org/10.3835/plantgenome2011.10.0026
[16] Himmel, M.E., Ding, S.Y., Johnson, D.K., et al. (2007) Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science, 315, 804-807.
[17] Gressel, J. (2008) Transgenics Are Imperative for Biofuel Crops. Plant Science, 174, 246-263.
[18] Richards, H.A., Rudas, V.A., Sun, H., et al. (2001) Construction of a GFP-BAR Plasmid and Its Use for Switchgrass Transformation. Plant Cell Reports, 20, 48-54.
https://doi.org/10.1007/s002990000274
[19] Li, R. and Qu, R. (2011) High Throughput Agrobacterium-Mediated Switchgrass Transformation. Biomass and Bioenergy, 35, 1046-1054.
[20] Xi, Y., Fu, C., Ge, Y., et al. (2009) Agrobacterium-Mediated Transformation of Switchgrass and Inheritance of the Transgenes. BioEnergy Research, 2, 275-283.
https://doi.org/10.1007/s12155-009-9049-7
[21] 刘公社, 周庆源, 宋松泉, 等. 能源植物甜高粱种质资源和分子生物学研究进展 [J]. 植物学报, 2009, 44(3): 253-261.
[22] 刘燕蓉, 岑慧芳, 严建萍, 等. 农杆菌介导的柳枝稷遗传转化体系的优化[J]. 中国农业科学, 2016, 49(1): 80-89.
[23] Emani, C., Sunilkumar, G. and Rathore, K.S. (2002) Transgene silencing and reactivation in Sorghum. Plant Science, 162, 181-192.
https://doi.org/10.1016/S0168-9452(01)00559-3
[24] Christou, P. (2005) Genetic Transformation of Crop Plants Using Microprojectile Bombardment. The Plant Journal, 2, 275-281.
https://doi.org/10.1111/j.1365-313X.1992.00275.x
[25] Zhao, Z., Cai, T., Tagliani, L., et al. (2000) Agrobacterium-Mediated Sorghum Transformation. Plant Molecular Biology, 44, 789-798.
[26] Howe, A., Sato, S., Dweikat, I., et al. (2006) Rapid and Reproducible Agrobacterium-Mediated Transformation of Sorghum. Plant Cell Reports, 25, 784-791.
https://doi.org/10.1007/s00299-005-0081-6
[27] Bihani, P., Char, B. and Bhargava, S. (2011) Transgenic Expression of Sorghum DREB2 in Rice Improves Tolerance and Yield under Water Limitation. Journal of Agricultural Science, 149, 95-101.
[28] Kumar, V., Campbell, L.M. and Rathore, K.S. (2011) Rapid Recovery and Characterization of Transformants Following Agrobacterium-Mediated T-DNA Transfer to Sorghum. Plant Cell, Tissue and Organ Culture, 104, 137-146.
https://doi.org/10.1007/s11240-010-9809-2
[29] Raghuwanshi, A. and Birch, R.G. (2010) Genetic Transformation of Sweet Sorghum. Plant Cell Reports, 4, 997-1005.
[30] Zhao, Z., Glassman, K. and Sewalt, V. (2003) Nutritionally Improved Transgenic Sorghum. In: Vasil, I.K., Ed., Plant Biotechnology 2002 and Beyond, Kluwer Academic Publishers, Heidelberg, 413-416.
https://doi.org/10.1007/978-94-017-2679-5_85
[31] 张明洲, 唐乔, 陈宗伦, 等. 农杆菌介导Bt基因遗传转化高粱[J]. 生物工程学报, 2009, 25(3): 418-423.
[32] 朱莉, 郎志宏, 李桂英, 等. 农杆菌介导甜高粱转Bt cry1Ah的研究[J]. 中国农业科学, 2011, 44(10): 1989-1996.
[33] 汤亚飞, 周国辉. 甘蔗转基因技术及其在甘蔗改良中的应用 [J]. 甘蔗糖业, 2005, 20(4): 1-5.
[34] Jackson, P.A. (2005) Breeding for Improved Sugar Content in Sugarcane. Field Crops Research, 92, 277-290.
https://doi.org/10.1016/j.fcr.2005.01.024
[35] 吴转娣, 刘新龙, 姚丽, 等. 根癌农杆菌介导的甘蔗遗传转化[J]. 湖南农业大学学报(自然科学版), 2011, 37(2): 150-155.
[36] Ferreira, S.D., Nishiyama, M.Y., Paterson, A.H., et al. (2013) Biofuel and Energy Crops: High-Yield Saccharinae Take Center Stage in the Post-Genomics Era. Genome Biology, 14, 210.
https://doi.org/10.1186/gb-2013-14-6-210
[37] Mayavan, S., Subramanyam, K., Arun, M., et al. (2013) Agrobacterium Tumefaciens-Mediated in Planta Seed Transformation Strategy in Sugarcane. Plant Cell Reports, 62, 1557-1574.
[38] Nawaz, M., Ullah, I., Iqbal, N., et al. (2013) Improving In Vitro Leaf Disk Regeneration System of Sugarcane (Saccharum Officinarum L.) with Concurrent Shoot/Root Induction from Somatic Embryos. Turkish Journal of Biology, 37, 726-732.
https://doi.org/10.3906/biy-1212-10
[39] Silveira, V., Devita, A.M., Macedo, A.F., et al. (2013) Morphological and Polyamine Content Changes in Embryogenic and Non-Embryogenic Callus of Sugarcane. Plant Cell Tissue and Organ Culture, 114, 351-364.
https://doi.org/10.1007/s11240-013-0330-2
[40] Maretzki, A., Sun, S.S., Nagai, C., Bidney, D., Houtchens, K.A., Delà Cruz, A. (1990) Development of a Transformation System for Sugarcane. Abstr VII Int Congr Plant Tissue Cell Culture, June 1990, IAPTC, Amsterdam, 68.
http://link.springer.com/chapter/10.1007%2F978-3-642-78037-0_27
[41] Bower, R. and Birch, R.G. (1992) Transgenic Sugarcane Plants via Microprojectile Bombardment. The Plant Journal, 2, 409-416.
https://doi.org/10.1111/j.1365-313X.1992.00409.x
[42] 张瑜, 鄢家俊, 白史且, 等. 农杆菌介导禾本科植物遗传转化的研究进展[J]. 草业与畜牧, 2016(4): 4-9.
[43] Bajaj, Y.P. (1994) Plant Protoplasts and Genetic Engineering. Springer Berlin Heidelberg, Heidelberg, 5.
[44] Manickavasagam, M., Ganapathi, A., Anbazhagan, V.R., et al. (2004) Agrobacterium-Mediated Genetic Transformation and Development of Herbicide-Resistant Sugarcane (Saccharum Species Hybirids) Using Axillary Buds. Plant Cell Reports, 23, 134-143.
https://doi.org/10.1007/s00299-004-0794-y
[45] 秦翠鲜, 陈忠良, 桂意云, 等. 农杆菌介导甘蔗愈伤组织遗传转化体系的优化[J]. 中国生物工程杂志, 2013, 33(9): 66-72.
[46] 滕峥, 李鸣, 崔永祯, 等. 农杆菌介导冷调节基因(Cbcor15a)遗传转化甘蔗体系的建立[J]. 南方农业学报, 2014, 45(8): 1333-1339.
[47] 黄诚梅, 魏源文, 邓智年, 等. 转Bt甘蔗后代Bar基因表达及其植株农艺性状表现[C]//中国作物学会. 中国作物学会2015年学术年会论文摘要集. 中国作物学会, 2015: 1.
[48] 王文治, 杨本鹏, 蔡文伟, 等. 甘蔗转基因甘露糖筛选系统的建立[J]. 生物技术通报, 2015, 31(1): 92-97.
[49] 王文治, 杨本鹏, 蔡文伟, 等. 抗除草剂Bar基因与EPSPS基因在转基因甘蔗中的应用研究[J]. 生物技术通报, 2016, 32(3): 73-78
[50] 王文治, 杨本鹏, 冯翠莲, 等. 基于PCR和蛋白检测分析多基因转化甘蔗的遗传稳定性[J]. 分子植物育种官方网站, 2016, 14(11): 1-11.
[51] 吴娟子, 张建丽, 潘玉梅, 等. 象草和杂交狼尾草细胞壁组分及乙醇理论产量动态分析[J]. 草业学报, 2014, 23(4): 153-161.
[52] 张建丽, 吴娟子, 钱晨, 等. 不同品系象草的生物产量及木质纤维素乙醇生产潜力研究[J]. 江苏农业科学, 2016, 44(8): 503-505.