纳米体系热力学研究新进展
Nano System Thermodynamics Research Progress
DOI: 10.12677/NAT.2017.72004, PDF, HTML, XML,  被引量 下载: 2,416  浏览: 5,339  国家自然科学基金支持
作者: 邱江源, 汤焕丰, 肖 明, 万 婷, 肖碧源:广西民族大学化学化工学院,广西 南宁;黄在银*:广西民族大学化学化工学院,广西 南宁;广西林产化学与工程重点实验室,广西 南宁;广西高校食品安全与药物分析化学重点实验室,广西 南宁
关键词: 纳米体系热力学粒径热力学函数热力学性质Nano System Thermodynamics Particle Size Thermodynamic Function Thermodynamic properties
摘要: 纳米材料指由尺寸在1 - 100 nm的微小颗粒组成的体系,因其独特的性能而受到广泛的研究。本文总结了纳米体系热力学性质研究的最新进展,主要从纳米体系中纳米颗粒在溶解、吸附、以及相变化等过程中粒径对其热力学性质的影响规律以及介绍通过多种实验原理和技术方法并结合理论模型获取纳米材料反应的热力学性质的研究进行阐述,并对纳米体系热力学性质研究的发展方向和应用前景进行了展望。
Abstract: Nanometer materials refer to the small particles system in size of 1 - 100 nm, because of its unique performance, are widely studied. This paper summarizes the latest progress in the study of thermodynamic properties of nano system, mainly from the system of nano particles in the dissolution, adsorption, phase change process of particle size on its thermodynamic properties such as regularity, and the thermodynamic properties of nanomaterial reaction which obtained by combining experiment principle and technical methods with theoretical model is expounded, and the development direction of research on nanometer system thermodynamic properties and the application foreground is prospected.
文章引用:邱江源, 汤焕丰, 肖明, 万婷, 肖碧源, 黄在银. 纳米体系热力学研究新进展[J]. 纳米技术, 2017, 7(2): 29-39. https://doi.org/10.12677/NAT.2017.72004

参考文献

[1] Gleiter, H., Hansen, N. and Horsewell, A. (1981) Deformation of Polycrystals: Mechanisms and Microstructures. Proceedings of the 2nd RIS International Symposium on Metallurgy and Materials Science, Roskilde, 1 July 1981, 15-21.
[2] Gleiter, H. (1995) Nanostructured Materials: State of the Art and Perspectives. Nanostructured Materials, 6, 3-14.
[3] Koch, C.C. (1998) Nanostructured Materials for Structural Applications: Promise and Progress. In: Srivatsan, T.S. and Khor, K.A., Eds., Proceeding of Fabric and Advanced Materials, Vol. 7, Minerals, Metals & Materials Society, Warrendale, 497-507.
[4] Andrievski, R.A. (1998) State-of-the-Art and Perspectives in Pariculate Nanostructured Materials. Materials Science forum. Trans Tech Publications, Stafa-Zurich, Vol. 282, 1-10.
[5] Gleiter, H. (1997) Nanostructured Materials. Journal of Metals, 33, 165-174.
[6] Siegel, R.W. (1997) Mechanical Properties of Nanophase Materials. Materials Science Forum. Trans Tech Publications, Stafa-Zurich, Vol. 235, 851-860.
[7] Guo, Z., Zou, Y., He, H., et al. (2016) Bifunctional Platinated Nanoparticles for Photoinduced Tumor Ablation. Advanced Materials, 28, 10155-10164.
https://doi.org/10.1002/adma.201602738
[8] Chamberlin, R.V. (2000) Mean-Field Cluster Model for the Critical Behaviour of Ferromagnets. Nature, 408, 337-339.
https://doi.org/10.1038/35042534
[9] Hill, T.L. (2001) Nano Seconds-Perspective: Nanothermodynamics. Nano Letters, 1, 111-112.
https://doi.org/10.1021/nl010010d
[10] Hill, T.L. (2001) Extension of Nanothermodynamics to Include a One-Dimensional Surface Excess. Nano Letters, 1, 159-160.
https://doi.org/10.1021/nl010009e
[11] Hill, T.L. (2001) A Different Approach to Nanothermodynamics. Nano Letters, 1, 273-275.
https://doi.org/10.1021/nl010027w
[12] 世敏, 祖勋. 晶纳米材料制备技术[M]. 北京: 化学工业出版社, 2002: 22-26.
[13] Criado, J.M. and Ortega, A. (1992) A Study of the Influence of Particle Size on the Thermal Decomposition of CaCO3 by Means of Constant Rate Thermal Analysis. Thermochimica Acta, 195, 163-167.
[14] Fu, Q.S., Xue, Y.Q., Cui, Z.X., et al. (2014) Study on the Size-Dependent Oxidation Reaction Kinetics of Nanosized Zinc Sulfide. Journal of Nanomaterials, 2014, 132.
[15] Yang, Y., Xue, Y., Cui, Z. and Zhao, M. (2014) Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment. Electrochimica Acta, 136, 565-571.
[16] Wen, Y.Z., Xue, Y.Q., Cui, Z.X., et al. (2015) Thermodynamics of Nanoadsorption from Solution: Theoretical and Experimental Research. The Journal of Chemical Thermodynamics, 80, 112-118.
[17] 刘作娇, 范高超, 李星星, 等. 不同形貌Ag3PO4的表面自由能及原位光催化过程的热力学和动力学参数[J]. 高等学校化学学报, 2015, 36(2): 212-214.
[18] Zhou, Z.Y., Tian, N., Li, J.T., et al. (2011) Nanomaterials of High Surface Energy with Exceptional Properties in Catalysis and Energy Storage. Chemical Society Reviews, 40, 4167-4185.
https://doi.org/10.1039/c0cs00176g
[19] Kuang, Q., Wang, X., Jiang, Z., et al. (2013) High-Energy-Surface Engineered Metal Oxide Micro-and Nanocrystallites and Their Applications. Accounts of Chemical Research, 47, 308-318.
https://doi.org/10.1021/ar400092x
[20] Hu, L., Peng, Q. and Li, Y. (2008) Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. Journal of the American Chemical Society, 130, 16136-16137.
https://doi.org/10.1021/ja806400e
[21] Altshuler, B., Marcus, C., Andrei, N., et al. (2006) Strongly Interacting Systems at the Nanoscale. International Centre for Thoretical Physics Thrieste (ITALY).
[22] Slater, B., Catlow, C.R.A., Gay, D.H., et al. (1999) Study of Surface Segregation of Antimony on SnO2 Surfaces by Computer Simulation Techniques. The Journal of Physical Chemistry B, 103, 10644-10650.
https://doi.org/10.1021/jp9905528
[23] Navrotsky, A. (2007) Calorimetry of Nanoparticles, Surfaces, Interfaces, Thin Films, and Multilayers. The Journal of Chemical Thermodynamics, 39, 1-9.
[24] Zhang, P., Xu, F., Navrotsky, A., et al. (2007) Surface Enthalpies of Nanophase ZnO with Different Morphologies. Chemistry of Materials, 19, 5687-5693.
https://doi.org/10.1021/cm0711919
[25] Yang, S. and Navrotsky, A. (2002) In Situ Calorimetric Study of the Growth of Silica TPA-MFI Crystals from an Initially Clear Solution. Chemistry of Materials, 14, 2803-2811.
https://doi.org/10.1021/cm0200689
[26] 易求实, 吴新明, 谭志诚. 纳米粉ZnO的制备及低温热容研究[J]. 无机材料学报, 2001,16(4): 620-625.
[27] 谢丹, 齐卫宏, 汪明朴. 金属纳米微粒熔化热力学性能的尺寸形状效应[J]. 金属学报, 2004, 40(10): 1041.
[28] 李群. 纳米材料的制备与应用技术[M]. 北京: 化学工业出版社, 2008: 2, 3-9.
[29] Lidorenko, N.S., Chizhik, S.P., Gladkikh, N.T., et al. (1981) Dokl. Akad. Nauk SSSR, 257, 1114-1116.
[30] Lubej, A., Koloini, T. and Pohar, C. (1997) Solubility of Copper (2) Oxychloride. Industrial & Engineering Chemistry Research, 36, 241-245.
https://doi.org/10.1021/ie960334q
[31] Meulenkamp, E.A. (1998) Size Dependence of the Dissolution of ZnO Nanoparticles. The Journal of Physical Chemistry B, 102, 7764-7769.
https://doi.org/10.1021/jp982305u
[32] 安莲英, 殷辉安, 唐明林, 等. 研究论文杂卤石溶解动力学[J]. 化工学报, 2004, 55(6): 929-933.
[33] Fan, C., Chen, J., Chen, Y., et al. (2006) Relationship between Solubility and Solubility Product: The Roles of Crystal Sizes and Crystallographic Directions. Geochimica et Cosmochimica Acta, 70, 3820-3829.
[34] Rimer, J.D., Trofymluk, O., Navrotsky, A., et al. (2007) Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials, 19, 4189-4197.
https://doi.org/10.1021/cm070708d
[35] 王国承, 侯春菊, 张立恒, 等. 铁液中Al2O3纳米颗粒溶解和熔化的热力学研究[J]. 有色金属科学与工程, 2011, 2(1): 23-27.
[36] 夏晓艳. 粒径对纳米颗粒溶解热力学与动力学的影响[D]: [硕士学位论文]. 太原: 太原理工大学, 2014: 13-16.
[37] 王珊珊. 溶解度法研究粒径对纳米颗粒表面热力学性质的影响[D]: [硕士学位论文]. 太原: 太原理工大学, 2015: 13-19.
[38] 倪哲明, 吴念慈. 甲醇在催化剂MgO (100)面上吸附的量子化学研究[J]. 分子催化, 1995, 9(2): 132-138.
[39] 来蔚鹏, 薛永强, 廉鹏, 等. 粒度对纳米体系化学反应热力学性质的影响[J]. 物理化学学报, 2007, 23(4): 508- 512.
[40] 高晟, 温艳珍, 薛永强, 等. 粒度对纳米氧化镁吸附苯的热力学性质影响[J]. 离子交换与吸附, 2013, 29(2): 148- 158.
[41] 郝存江, 冯青琴, 元炯亮, 等. 纳米γ-Al2O3的制备及其对铅(Ⅱ)镉(Ⅱ)铬(Ⅵ)的吸附性能[J]. 应用化学, 2004, 21(9): 958-961.
[42] 梁美娜, 朱义年, 刘海玲, 等. 氢氧化铁对砷的吸附研究[J]. 水处理技术, 2006, 32(7): 32-35.
[43] Boparai, H.K., Joseph, M. and O’Carroll, D.M. (2011) Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. Journal of Hazardous Materials, 186, 458-465.
[44] Yoon, S.Y., Lee, C.G., Park, J.A., et al. (2014) Kinetic, Equilibrium and Thermodynamic Studies for Phosphate Adsorption to Magnetic Iron Oxide Nanoparticles. Chemical Engineering Journal, 236, 341-347.
[45] 熊振湖, 王璐, 周建国, 等. 热力学, 热化学和溶液化学[J]. 物理化学学报, 2010, 26(11): 2890-2898.
[46] 温艳珍. 纳米材料吸附热力学和动力学的粒径效应[D]: [博士学位论文]. 太原: 太原理工大学, 2015: 22-42.
[47] Pavlow, P.N. (1909) Relation between Melting Point and Surface Energy. Russian Journal of Physical Chemistry, 40, 1022.
[48] Hanszen, K.J. (1960) Theoretische Untersuchungen über den schmelzpunkt kleiner kügelchen. Zeitschrift für Physik, 157, 523-553.
https://doi.org/10.1007/BF01340711
[49] Rie, E. (1923) Influence of Surface Tension on Melting and Freezing. Zeitschrift für Physikalische Chemie, 104, 354- 362.
[50] Reiss, H. and Wilson, I.B. (1948) The Effect of Surface on Melting Point. Journal of Colloid Science, 3, 551-561.
[51] Borel, J.P. (1981) Thermodynamical Size Effect and the Structure of Metallic Clusters. Surface Science, 106, 1-9.
[52] Wautelet, M., Dauchot, J.P. and Hecq, M. (2003) Size Effects on the Phase Diagrams of Nanoparticles of Various Shapes. Materials Science and Engineering, 23, 187-190.
[53] Skripov, V.P., Koverda, V.P. and Skokov, V.N. (1981) Size Effect on Melting of Small Particles. Physica Status Solidi, 66, 109-118.
https://doi.org/10.1002/pssa.2210660111
[54] Zou, C.D., Gao, Y.L., Bin, Y., et al. (2010) Size-Dependent Melting Properties of Sn Nanoparticles by Chemical Reduction Synthesis. Transactions of Nonferrous Metals Society of China, 20, 248-253.
[55] Celestini, F. and Ten Bosch, A. (1995) Effect of Shape on Phase Transition Temperature of Clusters. Physics Letters A, 207, 307-314.
[56] Luo, E.Z., Cai, Q., Chung, W.F., et al. (1996) Interface Effects in Melting of Pb Clusters on the Cu (111) Surface. Applied Surface Science, 92, 331-334.
[57] David, T.B., Lereah, Y., Deutscher, G., et al. (1995) Solid-Liquid Transition in Ultra-Fine Lead Particles. Philosophical Magazine A, 71, 1135-1143.
https://doi.org/10.1080/01418619508236241
[58] Castro, T., Reifenberger, R., Choi, E., et al. (1990) Size-Dependent Melting Temperature of Individual Nanometer- Sized Metallic Clusters. Physical Review B, 42, 8548.
https://doi.org/10.1103/PhysRevB.42.8548
[59] Takagi, M. (1954) Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. Journal of the Physical Society of Japan, 9, 359-363.
https://doi.org/10.1143/JPSJ.9.359
[60] Garvie, R.C. (1965) The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. The Journal of Physical Chemistry, 69, 1238-1243.
https://doi.org/10.1021/j100888a024
[61] Garvie, R.C., Hannink, R.H. and Pascoe, R.T. (1975) Ceramic Steel? Nature, 258, 703-704.
https://doi.org/10.1038/258703a0
[62] Garvie, R.C. (1978) Stabilization of the Tetragonal Structure in Zirconia Microcrystals. The Journal of Physical Chemistry, 82, 218-224.
https://doi.org/10.1021/j100491a016
[63] Wronski, C.R.M. (1967) The Size Dependence of the Melting Point of Small Particles of Tin. British Journal of Applied Physics, 18, 1731.
https://doi.org/10.1088/0508-3443/18/12/308
[64] Onushchenko, A.A. and Petrovskii, G.T. (1996) Size Effects in Phase Transitions of Semiconductor Nanoparticles Embedded in Glass. Journal of Non-Crystalline Solids, 196, 73-78.
[65] 张志. 纳米材料相变热力学[D]: [博士学位论文]. 吉林: 吉林大学, 2000: 10-35.
[66] Barnard, A.S., Xiao, Y. and Cai, Z. (2006) Modelling the Shape and Orientation of ZnO Nanobelts. Chemical Physics Letters, 419, 313-316.
[67] Barnard, A.S. and Zapol, P. (2004) A Model for the Phase Stability of Arbitrary Nanoparticles as a Function of Size and Shape. The Journal of Chemical Physics, 121, 4276-4283.
https://doi.org/10.1063/1.1775770
[68] Barnard, A.S. and Zapol, P. (2004) Predicting the Energetics, Phase Stability, and Morphology Evolution of Faceted and Spherical Anatase Nanocrystals. The Journal of Physical Chemistry B, 108, 18435-18440.
https://doi.org/10.1021/jp0472459
[69] Barnard, A.S. and Curtiss, L.A. (2005) Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano Letters, 5, 1261-1266.
https://doi.org/10.1021/nl050355m
[70] Barnard, A.S. and Curtiss, L.A. (2005) Computational Nano-Morphology: Modeling Shape as Well as Size. Reviews on Advanced Materials Science, 10, 105-109.
[71] 薛永强. 粒径对纳米体系相变和化学反应的影响[D]: [博士学位论文]. 太原: 太原理工大学, 2005: 28-30.
[72] Jiang, X., Jiang, M. and Zhao, M. (2011) Shape Effect on the Size and Dimension Dependent Order-Disorder Transition Temperatures of Bimetallic Alloys. Physica B, 406, 4544-4546.
[73] Jiang, X.B., Jiang, M. and Zhao, M. (2013) Thermodynamic Understanding of Phase Transitions of In2O3 Nanocrystals. Chemical Physics Letters, 563, 76-79.
[74] Jiang, X.B. and Zhao, M. (2013) Size, Composition and Shape Dependent Melting Temperature for AuPt Bimetallic Nanoparticles. Materials Science and Technology, 29, 1040-1043.
https://doi.org/10.1179/1743284713Y.0000000244
[75] Jiang, X. and Wen, Z. (2013) Modelling of the Phase Transition of Nanoscale Confined Liquid Crystal. Liquid Crystals, 40, 1116-1120.
https://doi.org/10.1080/02678292.2013.795624
[76] 姜小宝. 相关参数对纳米晶相变影响的热力学研究[D]: [博士学位论文]. 吉林: 吉林大学, 2013: 28-31.
[77] Hill, T.L. (1962) Thermodynamics of Small Systems. The Journal of Chemical Physics, 36, 3182-3197.
https://doi.org/10.1063/1.1732447
[78] Zhang, H., Huang, F., Gilbert, B., et al. (2003) Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. The Journal of Physical Chemistry B, 107, 13051- 13060.
https://doi.org/10.1021/jp036108t
[79] Hill, T.L. (1964) Thermodynamics of Small Systems. Vol. 2, W.A. Benjamin, New York.
[80] Wang, C.X., Yang, Y.H., Xu, N.S., et al. (2004) Thermodynamics of Diamond Nucleation on the Nanoscale. Journal of the American Chemical Society, 126, 11303-11306.
https://doi.org/10.1021/ja049333c
[81] 薛永强. 高分散体系对化学平衡的影响[J]. 化学通报, 1991(8): 13-17.
[82] Li, X. and Shih, W.H. (1997) Size Effects in Barium Titanate Particles and Clusters. Journal of the American Ceramic Society, 80, 2844-2852.
https://doi.org/10.1111/j.1151-2916.1997.tb03202.x
[83] Xue, Y.Q., Yan, R.P. and Gao, Y. (1997) The Effect of Coal Particle Size on Pyrolysis Equilibrium. 14th Annual International Pittsburgh Coal Conference, Tai Yuan, 23-27 September 1997, 23-27.
[84] 薛永强, 来蔚鹏, 王志忠. 粒度对煤粒燃烧和热解影响的理论分析[J]. 煤炭转化, 2005, 28(3): 19-21.
[85] Jiang, Q., Shi, H.X. and Zhao, M. (1999) Melting Thermodynamics of Organic Nanocrystals. The Journal of Chemical Physics, 111, 2176-2180.
https://doi.org/10.1063/1.479489
[86] Jiang, Q., Shi, H.X. and Zhao, M. (1999) Free Energy of Crystal-Liquid Interface. Acta Materialia, 47, 2109-2112.
[87] Jiang, Q., Zhang, Z. and Li, J.C. (2000) Melting Thermodynamics of Nanocrystals Embedded in a Matrix. Acta Materialia, 48, 4791-4795.
[88] 易求实, 吴新明, 谭志诚. 纳米粉ZnO的制备及低温热容研究[J]. 无机材料学报, 2001, 16(4) :620-624.
[89] Tan, Z.C., Wang, L., Meng, S.H. and Sun, L.X. (2002) Thermochemical Study of Nano-Materials. 2nd Cross-Strait Workshop on Nano Science & Technology, Hong Kong, 9 December 2002.
[90] Qi, W.H., Wang, M.P. and Xu, G.Y. (2003) Comment on “Size Effect on the Lattice Parameters of Nanoparticles”. Journal of Materials Science Letters, 22, 1333-1334.
https://doi.org/10.1023/A:1025779126267
[91] 谢丹, 齐卫宏, 汪明朴. 金属纳米微粒熔化热力学性能的尺寸形状效应[J]. 金属学报, 2004, 40(10): 1041.
[92] 宋晓艳, 高金萍, 张久兴. 纳米多晶体的热力学函数及其在相变热力学中的应用[J]. 物理学报, 2005, 54(3): 1313-1319.
[93] 欧阳刚. 纳米材料与纳米结构的表面与界面以及相关尺度效应[D]: [博士学位论文]. 广州: 中山大学, 2007: 3-20.
[94] 米艳, 黄在银, 姜俊颖, 等. CaMoO4微晶生长过程的原位微量热法研究[J]. 物理化学学报, 2009, 25(12): 2422- 2426.
[95] 王路得, 黄在银, 郭云霄, 王腾辉. 八面体纳米钼酸钡的原位生长及形成机理[J]. 高等学校化学学报, 2011(12): 2838-2843.
[96] 王路得, 黄在银, 范高超, 等. 电化学方法测定纳米材料的热力学函数[J]. 中国科学: 化学, 2012, 42(1): 47-51.
[97] 刘晓林, 王路得, 黄在银, 等. 纳米氧化锌热力学函数的微量热法及电化学法测量[J]. 高等学校化学学报, 2015, 36(3): 539-543.
[98] Chen, J., Ma, Y., Fan, G., et al. (2011) Thermokinetic Study on Growth Process of CdS Nanocrystals by in Situ Microcalorimetry. Materials Letters, 65, 1768-1771.
[99] 王腾辉, 王路得, 郭云霄, 等. 八面体纳米钼酸镉的标准摩尔生成焓及其粒度效应[J]. 科学通报, 2013, 58(14): 1321-1325.
[100] 范高超, 黄在银, 马玉洁, 等. 四针状纳米氧化锌的热力学函数[J]. 中国科学: 化学, 2011, 41(9): 1477-1481.
[101] Fan, G., Jiang, J., Li, Y., et al. (2011) Thermodynamic Functions of the ZnO Nanoweeds. Materials Chemistry and Physics, 130, 839-842.
[102] Fan, G., Huang, Z. and Wang, T. (2013) Size Effect on Thermodynamic Properties of CaMoO4 Micro/Nano Materials and Reaction Systems. Solid State Sciences, 16, 121-124.
[103] 高胜利, 陈三平. 化学反应的热动力学方程及其应用[J]. 无机化学学报, 2002, 18(4): 362-366.
[104] 黄在银. 化学热力学方法及其纳米物理化学应用[M]. 北京: 科学出版社, 2016 : 180-184.
[105] 肖明, 黄在银, 汤焕丰, 陆桑婷, 刘超. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J]. 物理化学学报, 2017(2): 399-406.
[106] 郭少辉. 粒径和形貌对纳米颗粒热力学性质影响的理论研究和量化计算[D]: [硕士学位论文]. 太原: 太原理工大学, 2015: 3-16.