远程航空通信分布式空时码技术
Distributed Space-Time Coding for Long Distance Aeronautical Communication
DOI: 10.12677/JA.2017.61002, PDF, HTML, XML, 下载: 1,597  浏览: 3,363 
作者: 张大鹏:空军95883部队,北京;刘婷:中国科学院光电研究院,北京;闫涛, 陶祁:空军第一航空学院航空电子工程系,河南 信阳
关键词: 航空通信中继放大转发检测转发分布式空时码Aeronautical Communication Relay Amplify-and-Forward Detect-and-Forward Distributed Space-Time Code
摘要: 航空通信距离因地球曲率而受到限制,并行中继转发是解决远程航空通信问题的一种有效途径。传统的放大转发与检测转发能够延长通信距离,但中继节点之间相互独立,对于空间资源的利用并不充分。本文在并行中继转发结构的基础上,提出航空通信系统中的分布式空时码传输方案,利用虚拟的多天线系统实现中继节点的分布式空时编码,并提出对应的接收检测算法。仿真表明,所提方案能够大幅提高中继转发的可靠性。
Abstract: The distance of aeronautical communication is limited by the curvature of the earth. Parallel relay forwarding is an effective way to solve the problem of long distance communication. Traditional amplify-and-forward and detect-and-forward can extend the communication distance, but the relay nodes are independent with each other and the space resources are not fully utilized. Based on parallel relay forwarding architecture, we propose a distributed space-time coding transmission scheme in aeronautical communication, use virtual multi-antenna system to realize the distributed space-time coding at relay nodes, and propose the corresponding detection algorithm at the destination node. Simulation results show that the proposed scheme can improve the reliability of parallel relay system in aeronautical communication.
文章引用:张大鹏, 刘婷, 闫涛, 陶祁. 远程航空通信分布式空时码技术[J]. 天线学报, 2017, 6(1): 7-13. https://doi.org/10.12677/JA.2017.61002

参考文献

[1] Laneman, J.N., Tse, D.N.C. and Wornell, G.W. (2004) Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Transactions on Information Theory, 50, 3062-3080.
https://doi.org/10.1109/TIT.2004.838089
[2] Bai, Z., Jia, J., Wang, C.-X. and Yuan, D. (2015) Performance Analysis of SNR-Based Incremental Hybrid Decode- Amplify-Forward Cooperative Relaying Protocol. IEEE Transactions on Communications, 63, 2094-2106.
https://doi.org/10.1109/TCOMM.2015.2427166
[3] Chen, D. and Laneman, J.N. (2006) Modulation and Demodulation for Cooperative Diversity in Wireless Systems. IEEE Transactions on Wireless Communications, 5, 1785-1794.
https://doi.org/10.1109/TWC.2006.1673090
[4] Dai, G. and Leib, H. (2016) Detect-and-Forward Multirelay Systems with Decision-Feedback Differential Coherent Receivers. IEEE Transactions on Wireless Communications, 15, 1267-1281.
https://doi.org/10.1109/TWC.2015.2487974
[5] Gomadam, K.S. and Jafar, S.A. (2007) Optimal Relay Functionality for SNR Maximization in Memoryless Relay Networks. IEEE Journal on Selected Areas in Communications, 25, 390-400.
https://doi.org/10.1109/JSAC.2007.070214
[6] Karim, M.A., Yang, T., Yuan, J., Chen, Z. and Land, I. (2010) A Novel Soft Forwarding Technique for Memoryless Relay Channels Based on Symbol-Wise Mutual Information. IEEE Communications Letters, 14, 927-929.
https://doi.org/10.1109/LCOMM.2010.090710.101035
[7] 邓卫华, 王闻今, 金石, 高西奇. 一种利用软信息网络编码在双向中继网络进行估计转发的方法[J]. 电子学报, 2012, 40(2): 308-312.
[8] Karim, M.A., Yuan, J., Chen, Z. and Li, J. (2012) Soft Information Relaying in Fading Channels. IEEE Wireless Communications Letters, 1, 233-236.
https://doi.org/10.1109/WCL.2012.033012.120080
[9] Haas, E. (2002) Aeronautical Channel Modeling. IEEE Transactions on Vehicular Technology, 51, 254-264.
https://doi.org/10.1109/25.994803
[10] 元洪波, 王珂. 航空信道下MPSK类信号的调制识别[J]. 信号处理, 2013, 29(2): 249-255.
[11] 梅文华, 蔡善法. JTIDS/Link16数据链[M]. 北京: 国防工业出版社, 2007.
[12] Tarokh, V., Jafarkhani, H. and Calderbank, A.R. (1999) Space-Time Block Codes from Orthogonal Designs. IEEE Transactions on Information Theory, 45, 1456-1467.
https://doi.org/10.1109/18.771146