垂直沉积和离心沉降的蛋白石结构与反蛋白石结构的制备研究
Fabrication of Opal/Inverse Opal Structure by Vertical Deposition and Centrifugal Sedimentation
DOI: 10.12677/MS.2017.73048, PDF, HTML, XML,  被引量 下载: 2,119  浏览: 7,553  国家自然科学基金支持
作者: 韩吉薇, 秦俊杰, 李 雪, 董博华, 曹立新, 王 玮:中国海洋大学材料科学与工程研究院,山东 青岛
关键词: 垂直沉积离心沉降蛋白石结构反蛋白石结构Vertical Deposition Centrifugal Sedimentation Opal Structure Inverse Opal Structure
摘要: 采用无皂乳液聚合的方法合成了粒径可控且范围在485 nm-660 nm内的聚苯乙烯(PS)微球乳液,得到的PS微球粒径均一且带有负电荷,满足组装成二维和三维光子晶体的条件。采用垂直沉积和离心沉降两种方法制备蛋白石结构和反蛋白石结构光子晶体,并对其形貌进行分析。垂直沉积法得到的蛋白石结构和反蛋白石结构光子晶体结构紧密为六方堆积结构,排列有序,缺陷较少。但获得的光子晶体质量有限且制备周期较长,并限于二维类薄膜结构,适合对结构要求比较高的低维材料应用。离心沉积法得到的蛋白石结构和反蛋白石结构光子晶体存在多种排列结构,有序性差含有较多缺陷。但这种方法得到的光子晶体材料量大且制备周期短,具有三维材料结构,适合对结构有序度要求不高的光子晶体大批量负载材料等应用。
Abstract: Polystyrene (PS) microsphere with controlled particle size ranging from 485 nm to 660 nm was synthesized by emulsifier-free emulsion polymerization. The synthesized PS microspheres have uniform size with narrow size distribution and are negatively surface charged. High monodispersity of microspheres allows them self-assemble to form 2D or 3D ordered opal structure. We analyzed the opal and inverse opal structural photonic crystals obtained by vertical deposition and centrifugal sedimentation. The photonic crystals in opal structure and inverse opal structure ob-tained by the vertical deposition method are hexagonal packed lattice. Although the photonic crystals obtained by this way are film-like materials in relatively small quantity and the prepara-tion is time consuming, the formed materials have high degree of order in structure with fewer defects and thus it is suitable for applications requiring high ordered structural requirements. The photonic crystals of opal structure and inverse opal structure obtained by centrifugal sedi-mentation have a variety of arrangement structures. They are poorly ordered and contain more defects. However, a large area of photonic crystal material can be obtained by this method and the preparation cycle is short, and thus this method is suitable for the fabrication of load materials in bulk amount but with less demanding on the structure.
文章引用:韩吉薇, 秦俊杰, 李雪, 董博华, 曹立新, 王玮. 垂直沉积和离心沉降的蛋白石结构与反蛋白石结构的制备研究[J]. 材料科学, 2017, 7(3): 353-361. https://doi.org/10.12677/MS.2017.73048

参考文献

[1] Von Freymann, G., Kitaev, V., Lotsch, B.V. and Ozin, G.A. (2013) Bottom-Up Assembly of Photonic Crystals. Chemical Society Reviews, 42, 2528-2554.
https://doi.org/10.1039/C2CS35309A
[2] Ge, J. and Yin, Y. (2011) Responsive Photonic Crystals. Angewandte Chemie, 50, 1492-1522.
https://doi.org/10.1002/anie.200907091
[3] Zhang, J., Sun, Z. and Yang, B. (2009) Self-Assembly of Photonic Crystals from Polymer Colloids. Current Opinion in Colloid & Interface Science, 14, 103-114.
[4] Jin, F., Shi, L.-T., Zheng, M.-L., Dong, X.-Z., Chen, S., Zhao, Z.-S., et al. (2013) Lasing and Amplified Spontaneous Emission in a Pol-ymeric Inverse Opal Photonic Crystal Resonating Cavity. The Journal of Physical Chemistry C, 117, 9463-9468.
https://doi.org/10.1021/jp312617s
[5] Mandlmeier, B., Szeifert, J.M., Fattakhova-Rohlfing, D., Amenitsch, H. and Bein, T. (2011) Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal. Journal of the American Chemical Society, 133, 17274-17282.
https://doi.org/10.1021/ja204667e
[6] Zhang, W., Anaya, M., Lozano, G., Calvo, M.E., Johnston, M.B., Miguez, H., et al. (2015) Highly Efficient Perovskite Solar Cells with Tunable Structural Color. Nano Letters, 15, 1698-1702.
https://doi.org/10.1021/nl504349z
[7] Schroden, R.C., Al-Daous, M. and Stein, A. (2001) Self-Modification of Spontaneous Emission by Inverse Opal Silica Photonic Crystals. Chemistry of Materials, 13, 2945-2950.
https://doi.org/10.1021/cm010230s
[8] 刘雯璐, 荆涛, 田景芝. 3DOM SH-SiO2材料的制备及对Pb(Ⅱ)离子的吸附性能研究[J]. 化工时刊, 2011(11): 13-16 + 30.
[9] Kang, P., Ogunbo, S.O. and Erickson, D. (2011) High Resolution Reversible Color Images on Photonic Crystal Substrates. Langmuir, 27, 9676-9680.
https://doi.org/10.1021/la201973b
[10] 李文胜, 张琴, 付艳华, 黄海铭. 一种基于光子晶体结构的军用车辆红外隐身涂层的设计[J]. 红外与激光工程, 2015(11): 3299-3303.
[11] Cui, Q. and Liang, L. (2012) A Combined Physical-Chemical Polymerization Process for Fabrication of Nanoparticle-Hydrogel Sensing Materials. Macromolecules, 45, 8382-8386.
https://doi.org/10.1021/ma301119f
[12] Smith, N.L., Hong, Z. and Asher, S.A. (2014) Responsive Ionic Liquid-Polymer 2D Photonic Crystal Gas Sensors. The Analyst, 139, 6379-6386.
https://doi.org/10.1039/C4AN01485E
[13] Guo, W., Wang, M., Xia, W. and Dai, L. (2013) Two Sub-strate-Confined Sol-Gel Coassembled Ordered Macroporous Silica Structures with an Open Surface. Langmuir, 29, 5944-5951.
https://doi.org/10.1021/la304268b
[14] Wang, L. and Zhao, X.S. (2007) Fabrication of Crack-Free Colloidal Crystals Using a Modified Vertical Deposition Method. The Journal of Physical Chemistry C, 111, 8538-8542.
https://doi.org/10.1021/jp071233g
[15] Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M., et al. (2016) Enhanced Activity of CeO2-ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure. Energy & Fuels, 30, 638- 647.
https://doi.org/10.1021/acs.energyfuels.5b02151
[16] Reese, C.E., Guerrero, C.D., Weissman, J.M., Lee, K. and Asher, S.A. (2000) Synthesis of Highly Charged, Monodisperse Polystyrene Colloidal Particles for the Fabrication of Photonic Crystals. Journal of Colloid and Interface Science, 232, 76-80.
https://doi.org/10.1006/jcis.2000.7190
[17] Reese, C.E. and Asher, S.A. (2002) Emulsifier-Free Emulsion Polymerization Produces Highly Charged, Monodisperse Particles for near Infrared Photonic Crystals. Journal of Colloid and Interface Science, 248, 41-46.
https://doi.org/10.1006/jcis.2001.8193
[18] 闫刚印, 杭联茂, 孟江, 赵亚妮, 何磊. 沉积条件对SiO2光子晶体表面形貌的影响[J]. 硅酸盐通报, 2015(04): 1127-1132.
[19] 魏凤玉, 王平华, 见玉娟. 苯乙烯-甲基丙烯酸羟乙酯无皂乳液聚合过程[J]. 应用化学, 2004(07): 748-750.
[20] Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H. and Aizenberg, J. (2010) Assembly of Large-Area, Highly Ordered, Crack-Free Inverse Opal Films. Proceedings of the National Academy of Sciences of the United States of America, 107, 10354-10359.
https://doi.org/10.1073/pnas.1000954107