病毒介导的基因转移技术在海洋无脊椎动物中的研究进展
Research Progress of Virus-Mediated Gene Transfer Technology in Marine Invertebrates
DOI: 10.12677/AMS.2017.42008, PDF, HTML, XML, 下载: 1,747  浏览: 4,407  国家自然科学基金支持
作者: 陈学美, 申晓彤, 李 炎, 郭华荣:中国海洋大学海洋生命学院,海洋遗传育种教育部重点实验室,山东 青岛
关键词: 海洋无脊椎动物病毒介导的基因转移技术逆转录病毒载体杆状病毒载体Marine Invertebrates Virus Mediated Gene Transfer Technology Retroviral Vector Baculoviral Vector
摘要: 病毒介导的基因转移技术是利用携带外源目的基因的病毒载体、1个或多个包装载体以及包装细胞,模拟病毒的侵染和转移行为,实现将外源目的基因导入宿主细胞的基因转移技术。目前,已建立的比较成熟的病毒基因转移系统包括逆转录病毒、腺病毒、杆状病毒、腺相关病毒和慢病毒系统。这些病毒基因转移系统已在哺乳动物、鸟类和昆虫细胞上得到广泛应用,前三种病毒基因转移系统在海洋脊椎动物鱼类中也已得到很好的应用,而在海洋无脊椎动物中,仅能见到逆转录病毒和杆状病毒基因转移系统的应用报道。本文综述了逆转录病毒和杆状病毒介导的基因转移技术在海洋无脊椎动物中的研究进展,并对其应用前景进行了展望。
Abstract: Virus-mediated gene transfer technology can effectively deliver and introduce exogenous genes into the host cells by simulating the infecting and integrating process of virus using a viral vector carrying foreign target gene, one or more packaging plasmids and packaging cells which provide a place and tool to package and produce virions. Up to date, five virus-mediated gene transfer sys-tems have been well-developed including retrovirus, adenovirus, baculovirus, adeno-associated virus and lentivirus. All of them have been widely used in mammalian, bird and insects and only the first three virus systems have been applied in the marine vertebrates. In contrast, only retrovirus and baculovirus systems have been reported in the marine invertebrates. This review has summarized the research progress of retrovirus and baculovirus systems in the marine inverte-brates and the future of their applications are also prospected.
文章引用:陈学美, 申晓彤, 李炎, 郭华荣. 病毒介导的基因转移技术在海洋无脊椎动物中的研究进展[J]. 海洋科学前沿, 2017, 4(2): 55-60. https://doi.org/10.12677/AMS.2017.42008

参考文献

[1] Zhang, X. and Godbey, W.T. (2006) Viral Vectors for Gene Delivery in Tissue Engineering. Advanced Drug Delivery Reviews, 58, 515-534.
https://doi.org/10.1016/j.addr.2006.03.006
[2] Walther, W. and Stein, U. (2000) Viral Vectors for Gene Transfer. Drugs, 60, 249-271.
https://doi.org/10.2165/00003495-200060020-00002
[3] Kay, M.A., Glorioso, J.C. and Naldini, L. (2001) Viral Vectors for Gene Therapy: The Art of Turning Infectious Agents into Vehicles of Therapeutics. Nature Medicine, 7, 33-40.
https://doi.org/10.1038/83324
[4] Kost, T.A. and Condreay, J.P. (2002) Recombinant Baculoviruses as Mammalian Cell Gene-Delivery Vectors. Trends in Biotechnology, 20, 173-180.
https://doi.org/10.1016/S0167-7799(01)01911-4
[5] Kost, T.A., Condreay, J.P. and Jarvis, D.L. (2005) Bacu-lovirus as Versatile Vectors for Protein Expression in Insect and Mammalian Cells. Nature biotechnology, 23, 567-575.
https://doi.org/10.1038/nbt1095
[6] Becker, T.C., Noel, R.J., Coats, W.S., et al. (1994) Use of Recombinant Adenovirus for Metabolic Engineering of Mammalian Cells. Methods in Cell Biology, 43, 161-189.
https://doi.org/10.1016/S0091-679X(08)60603-2
[7] Lin, S., Gaiano, N., Culp, P., et al. (1994) Integration and Germ-Line Transmission of a Pseudotyped Retroviral Vector in Zebrafish. Science-New York Then Washington-, 265, 666-666.
https://doi.org/10.1126/science.8036514
[8] Kurita, K., Burgess, S.M. and Sakai, N. (2004) Transgenic Zebrafish Produced by Retroviral Infection of in Vitro-Cultured Sperm. Proceedings of the National Academy of Sciences of the United States of America, 101, 1263- 1267.
https://doi.org/10.1073/pnas.0304265101
[9] Liu, Q., Wang, Y., Lin, F., et al. (2015) Gene Transfer and Genome-Wide Insertional Mutagenesis by Retroviral Transduction in Fish Stem Cells. PloS one, 10, e0127961.
https://doi.org/10.1371/journal.pone.0127961
[10] Wagle, M. and Jesuthasan, S. (2003) Baculovirus-Mediated Gene Expression in Zebrafish. Marine Biotechnology, 5, 58-63.
https://doi.org/10.1007/s10126-002-0050-9
[11] Leisy, D.J., Lewis, T.D., Leong, J.A.C., et al. (2003) Transduc-tion of Cultured Fish Cells with Recombinant Baculoviruses. Journal of General Virology, 84, 1173-1178.
https://doi.org/10.1099/vir.0.18861-0
[12] Yan, Y., Du, J., Chen, T., et al. (2009) Establishment of Medakafish as a Model for Stem Cell-Based Gene Therapy: Efficient Gene Delivery and Potential Chromosomal Integration by Bac-uloviral Vectors. Experimental Cell Research, 315, 2322-2331.
[13] Huang, F., Cao, S., Cui, X., et al. (2011) Efficient Gene Delivery into Fish Cells by an Improved Recombinant Baculovirus. Journal of Virological Methods, 173, 294-299.
[14] Kawasaki, T., Saito, K., Mitsui, K., et al. (2009) Introduction of a Foreign Gene into Zebrafish and Medaka Cells Using Adenoviral Vectors. Zebrafish, 6, 253-258.
https://doi.org/10.1089/zeb.2009.0596
[15] Suehiro, Y., Kinoshita, M., Okuyama, T., et al. (2010) Transient and Permanent Gene Transfer into the Brain of the Teleost Fish Medaka (Oryzias latipes) Using Human Adenovirus and the Cre-loxP System. FEBS Letters, 584, 3545-3549.
https://doi.org/10.1016/j.febslet.2010.06.047
[16] Koo, B.C., Kwon, M.S., Kim, D., et al. (2016) Production of Germline Transgenic Chickens Expressing High Levels of Recom-binant hEPO Using a MoMLV-Based Retrovirus Vector. The 16th International Symposium on Developmental Bio-technology, October 2016, 164-164.
[17] Heilbronn, R. and Weger, S. (2010) Viral Vectors for Gene Transfer: Current Status of Gene Therapeutics. In: Schäfer- Korting, M., Ed., Drug Delivery, Springer, Berlin, Heidelberg, 143-170.
https://doi.org/10.1007/978-3-642-00477-3_5
[18] 许建, 李世崇, 陈昭烈. 逆转录病毒表达系统及其在外源蛋白高效表达中的应用[J]. 中国生物工程杂志, 2008, 28(5): 116-121.
[19] Whittaker, G.R. and Helenius, A. (1998) Nuclear Import and Export of Viruses and Virus Genomes. Virology, 246, 1-23.
[20] 张杰, 王彦刈, 吕磊, 郁建平. 单嗜性包装细胞包装逆转录病毒方法研究[J]. 贵州大学学报(自然科学版), 2015, 32(3): 28-31.
[21] Burns, J.C., Friedmann, T., Driever, W., et al. (1993) Vesicular Stomatitis Virus G Glycoprotein Pseudotyped Retroviral Vectors: Concentration to Very High Titer and Efficient Gene Transfer into Mammalian and Nonmammalian Cells. Proceedings of the National Academy of Sciences of the United States of America, 90, 8033-8037.
https://doi.org/10.1073/pnas.90.17.8033
[22] Lu, J.K., Chen, T.T., Allen, S.K., et al. (1996) Production of Transgenic Dwarf Surfclams, Mulinia lateralis, with Pantropic Retroviral Vectors. Proceedings of the National Academy of Sciences of the United States of America, 93, 3482- 3486.
https://doi.org/10.1073/pnas.93.8.3482
[23] Boulo, V., Cadoret, J.P., Shike, H., et al. (2000) Of Cultured Embryo Cells of the Pacific Oyster, Crassostrea gigas, by Pantropic Retroviral Vectors. In Vitro Cellular & Developmental Biology-Animal, 36, 395-399.
https://doi.org/10.1290/1071-2690(2000)036<0395:IOCECO>2.0.CO;2
[24] Shike, H., Shimizu, C., Klimpel, K.S., et al. (2000) Expression of Foreign Genes in Primary Cultured Cells of the Blue Shrimp Penaeus stylirostris. Marine Biology, 137, 605-611.
https://doi.org/10.1007/s002270000381
[25] Hu, G.B., Wang, D., Wang, C.H., et al. (2008) A Novel Immortalization Vector for the Establishment of Penaeid Shrimp Cell Lines. In Vitro Cellular & Developmental Biology-Animal, 44, 51-56.
https://doi.org/10.1007/s11626-007-9076-7
[26] Han, Q., Dong, D., Zhang, X., et al. (2015) Problems with the Use of Liposome- and Retrovirus-Mediated Gene Transfer Methods in the Primary Lymphoid Cells of the Oka Organs of the Greasyback Shrimp, Metapenaeus ensis (De Haan, 1844). Crustaceana, 88, 1351-1365.
https://doi.org/10.1163/15685403-00003498
[27] Pu, L., Wang, J., Zhang, X., et al. (2017) Development of Pseudotyped Retroviral System for Effective Gene Transfer and Expression in Penaeid Shrimp Cells. Aquaculture, 467, 198-210.
[28] Du, H., Xu, Z., Wu, X., et al. (2006) Increased Resistance to White Spot Syndrome Virus in Procambarus clarkii by Injection of Envelope Protein VP28 Expressed Using Recombinant Baculovirus. Aquaculture, 260, 39-43.
[29] Xu, Z., Du, H., Xu, Y., et al. (2006) Crayfish Procambarus clarkii Protected against White Spot Syndrome Virus by Oral Administration of Viral Proteins Expressed in Silkworms. Aquaculture, 253, 179-183.
[30] Madhan, S., Prabakaran, M. and Kwang, J. (2010) Baculovirus as Vaccine Vectors. Current Gene Therapy, 10, 201- 213.
https://doi.org/10.2174/156652310791321233
[31] Gao, H., Wang, Y., Li, N., et al. (2007) Efficient Gene Delivery into Mammalian Cells Mediated by a Recombinant Baculovirus Containing a Whispovirus ie1 Promoter, a Novel Shuttle Promoter between Insect Cells and Mammalian Cells. Journal of Biotechnology, 131, 138-143.
[32] Lin, S.Y., Chung, Y.C. and Hu, Y.C. (2014) Update on Baculovirus as an Expression and/or Delivery Vehicle for Vaccine Antigens. Expert Review of Vaccines, 13, 1501-1521.
https://doi.org/10.1586/14760584.2014.951637
[33] Barry, G.F. (1988) A Broad-Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-Negative Bacteria. Gene, 71, 75-84.
[34] Hofmann, C., Sandig, V., Jennings, G., et al. (1995) Efficient Gene Transfer into Human Hepatocytes by Baculovirus Vectors. Proceedings of the National Academy of Sciences of the United States of America, 92, 10099-10103.
https://doi.org/10.1073/pnas.92.22.10099
[35] Ping, W., Ge, J., Li, S., et al. (2006) Baculovirus-Mediated Gene Expression in Chicken Primary Cells. Avian Diseases, 50, 59-63.
https://doi.org/10.1637/7418-080705R.1
[36] Lee, D.F., Chen, C.C., Hsu, T.A., et al. (2000) A Baculovirus Superinfection System: Efficient Vehicle for Gene Transfer into Drosophila S2 Cells. Journal of Virology, 74, 11873-11880.
https://doi.org/10.1128/JVI.74.24.11873-11880.2000
[37] Ando, T., Fujiyuki, T., Kawashima, T., et al. (2007) In Vivo Gene Transfer into the Honeybee Using a Nucleopolyhedron Virus Vector. Biochemical and Biophysical Research Communications, 352, 335-340.
[38] Lu, L., Wang, H., Manopo, I., et al. (2005) Baculovirus-Mediated Promoter Assay and Transcriptional Analysis of White Spot Syndrome Virus orf427 Gene. Virology Journal, 2, 71.
https://doi.org/10.1186/1743-422X-2-71
[39] Musthaq, S.S., Madhan, S., Hameed, A.S., et al. (2009) Localization of VP28 on the Baculovirus Envelope and Its Immunogenicity against White Spot Syndrome Virus in Penaeus monodon. Virology, 391, 315-324.
https://doi.org/10.1016/j.virol.2009.06.017
[40] 史英力. 以凡纳滨对虾β-actin基因启动子为元件的重组昆虫杆状病毒表达系统的建立[D]: [博士学位论文]. 青岛: 中国科学院研究生院(海洋研究所), 2016.
[41] Shi, Y., Xiang, J., Zhou, G., et al. (2016) The Pacific White Shrimp β-Actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus. Marine Biotechnology, 18, 349-358.
https://doi.org/10.1007/s10126-016-9700-1
[42] Puthumana, J., Philip, R. and Singh, I.B. (2016) Transgene Expression in Penaeus monodon Cells: Evaluation of Recombinant Baculoviral Vectors with Shrimp Specific Hybrid Promoters. Cytotechnology, 68, 1147-1159.
https://doi.org/10.1007/s10616-015-9872-y.