青草沙水库浮游植物群落特征与水环境因子的典范对应分析
Community Structure of Phytoplankton and Their Canonical Correspondence Analysis with Environmental Factors in Qingcaosha Reservoir
DOI: 10.12677/JWRR.2017.63030, PDF, HTML, XML,  被引量 下载: 1,801  浏览: 4,451  科研立项经费支持
作者: 吴 婷, 李灵慧, 龚庆碗, 黄清辉, 李建华:同济大学环境科学与工程学院,上海
关键词: 水源地浮游植物水环境因子典范对应分析水质评价Water Source Phytoplankton Environmental Factors Canonical Correspondence Analysis Water Quality Evaluation
摘要: 为揭示青草沙水库浮游植物群落结构特征及其与水环境因子的关系,于2014年1月至 2014年11月,逐月对青草沙水库12个位点浮游植物种类组成、种群细胞密度及12项水体理化指标进行了调查分析。结果表明:调查期间共检出浮游植物8门88属207种,主要优势种有颗粒直链藻(Aulacoseira granulate)、颗粒直链藻最窄变种(Aulacoseira granulate var. angustissima)、变异直链藻(Melosira varians)、梅尼小环藻(Cyclotella meneghiniana)、卵形隐藻(Cryptomonas ovata)、尖尾蓝隐藻(Chroomonas acuta)、微小色球藻(Chroococcus minutus)、点形平裂藻(Merismopedia punctata)和铜绿微囊藻(Microcystis aeruginosa)等。浮游植物群落组成以硅藻为主,蓝绿藻其次;浮游植物细胞密度季节差异大,6月最高,为2.81 × 106 cells/L,1月最低,为2.19 × 105 cells/L,全年Margalef指数、Pielou指数及Shannon-Wiener指数分别为3.50 (±0.74)、0.35 (±0.17)及2.41 (±0.72),利用TLI(∑)指数综合评价青草沙草水体处于轻度富营养化状态。青草沙水库浮游植物群落结构变化规律为冬季隐–硅藻型、春季硅–绿藻型、夏季硅–蓝藻型、秋季蓝–硅藻型。水库浮游植物空间差异较大,库区中后部多样性明显高于前部。典范对应分析(CCA)表明,温度、溶解氧、pH、总氮和总磷与青草沙水库浮游植物群落结构关系最为密切。
Abstract: In order to reveal the community structure characteristics of phytoplankton and the relationships with environmental factors in Qingcaosha Reservoir, the phytoplankton species composition, abundance and 12 environmental factors at 12 sampling sites were analyzed from January 2014 to November 2014. A total of 207 phytoplankton species were identified, which belong to 88 genera and 8 phyla. The dominant species were Aulacoseira granulata, Aulacoseira granulate var. angustissima, Cyclotella meneghiniana, Cryptomonas ovate, Chroomonas acuta, Chroococcus minutus, Merismopedia punctata and Microcystis aeruginosa, etc. Phytoplankton species in Qingcaosha Reservoir were mainly composed by Bacillariophyta, Chlorophyta and Cyanophyta. Phytoplankton abundance varied seasonally with the maximum value (2.81 × 106 cells/L) in June and minimum (2.19 × 105 cells/L) in January. Mean Margalef index, Pielou index and Shannon- Wiener index were 3.50 (±0.74), 0.35 (±0.17) and 2.41 (±0.72). The phytoplankton community structure was of Cryptophyta-Bacillariophyta type in winter, of Bacillariophyta-Chlorophyta type in spring, of Bacillariophyta-Cyanophyta type in summer and of Cyanophyta-Bacillariophyta type in autumn. Phytoplankton spatial differences are large, the diversity of front portion was significantly higher than the rear reservoir area. Canonical correlation analysis (CCA) showed that temperature, dissolved oxygen, pH, total N and total P had the closest relationships with the phytoplankton community structure in the reservoir.
文章引用:吴婷, 李灵慧, 龚庆碗, 黄清辉, 李建华. 青草沙水库浮游植物群落特征与水环境因子的典范对应分析[J]. 水资源研究, 2017, 6(3): 254-264. https://doi.org/10.12677/JWRR.2017.63030

参考文献

[1] 亮杰, 余鹏飞, 竺俊全, 等. 浙江横山水库浮游植物群落结构特征及其影响因子[J]. 应用生态学报, 2014, 25(2): 569-576. YANG Liangjie, YU Pengfei, ZHU Junquan, et al. Community structure characteristics of phytoplankton and related affecting factors in Heng-Shan Reservoir, Zhejiang, China. Chinese Journal of Applied Ecology, 2014, 25(2): 569-576. (in Chinese)
[2] PÉREZ, J. R., LOUREIRO, S., MENEZES, S., et al. Assessment of water quality in the Alqueva Reservoir (Portugal) using bioassays. Environmental Science and Pollution Research, 2010, 17(3): 688-702.
https://doi.org/10.1007/s11356-009-0174-9
[3] SUIKKANEN, S., LAAMANEN, M. and HUTTUNEN, M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science, 2007, 71(3): 580-592.
[4] PTACNIK, R., LEPISTÖ, L., WILLÉN, E., et al. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquatic Ecology, 2008, 42(2): 227-236.
https://doi.org/10.1007/s10452-008-9181-z
[5] MCQUATTERS-GOLLOP, A., EDWARDS, M., HELAOUËT, P., et al. The continuous plankton recorder survey: How can long-term phytoplankton datasets contribute to the assessment of good environmental status? Estuarine, Coastal and Shelf Science, 2015, 162: 88-97.
[6] 刘歆璞, 张玮, 王丽卿, 等. 青草沙水库浮游植物群落结构及其与环境因子的关系[J]. 上海海洋大学学报, 2015, 24(4): 532-543. ZHOU Xinpu, ZHANG Wei, WANG Liqin, et al. Community structure of phytoplankton and their canonical correspondence analysis with environment factors in Qingcaosha Reservoir. Journal of Shanghai Ocean University. 2015, 24(4): 532-543. (in Chinese)
[7] 周莉莉. 河口水库浮游植物变化特征及环境管理体系探讨[D]: [硕士学位论文]. 上海: 华东师范大学, 2014. ZHOU Lili. Research on phytoplanktonand environmental management system of estuarine reservoir. East China Normal University, 2014. (in Chinese)
[8] 胡鸿, 魏印心. 中国淡水浮游植物: 系统, 分类及生态[J]. 北京: 科学出版社, 2006. HU Hong, WEI Yinxin. The freshwater algae of China: Systematics, taxonomy, ecology. Beijing: Science Press, 2006. (in Chinese)
[9] 石晓丹, 阮晓红, 邢雅囡, 等. 苏州平原河网区浅水湖泊冬夏季浮游植物群落与环境因子的典范对应分析[J]. 环境科学, 2008, 29(11): 2999-3008. SHI Xiaodan, RUAN Xiaohong, JIN Yanan, et al. Canonical correspondence analysis between phytoplankton community and environmental factors in winter and summer in shallow lakes of plain river network areas, Suzhou. Chinese Journal of Environmental Science, 2008, 29(11): 2999-3008. (in Chinese)
[10] 蔡庆华. 湖泊富营养化综合评价方法[J]. 湖泊科学, 1997, 9(1): 89-94. CAI Qinghua. Comprehensive evaluation of eutrophication of lakes. Journal of Lake Science, 1997, 9(1): 89-94. (in Chi-nese)
[11] 金相灿, 刘树坤, 章宗涉, 等. 中国湖泊环境[M]. 北京: 海洋出版社, 1995. JIN Xiangcan, LIU Shukun, ZHANG Zongshe, et al. China lake environment. Beijing: Ocean Press, 1995. (in Chi-nese)
[12] WANG, X., LU, Y., HE, G., et al. Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: A 5-year study. Journal of Environmental Sciences, 2007, 19(8): 920-927.
[13] 庞清江, 李白英. 东平湖水体富营养化评价[J]. 水资源保护, 2003, 19(5): 42-44. PANG Qingjiang, LI Baiying. Assessment of eutrophication of Dongping Lake water body. Water Resources Protection, 2003, 19(5): 42-44. (in Chinese)
[14] 周金金, 高乃云, 赵世嘏, 等. 青草沙水库投入运行前原水中氮和磷动态变化特征研究[J]. 给水排水, 2010, 36(12): 49-52. ZHOU Jinjin, GAO Naiyun, ZHAO Shigu, et al. Nitrogen and phosphorus dynamic changing features of raw water before Qingcaosha reservoir operation. Water & Wastewater Engineering, 2010, 36(12): 49-52. (in Chinese)
[15] THORNTON, K. W., KIMMEL, B. L. and PAYNE, F. E. Reservoir limnology: Ecological perspectives. Hoboken: John Wiley & Sons, 1990.
[16] AGAWIN, N. S. R., DUARTE, C. M. and AGUSTI, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 2000, 45(3): 591-600.
https://doi.org/10.4319/lo.2000.45.3.0591
[17] LEHMAN, P. W. The influence of climate on phytoplankton community biomass in San Francisco Bay Estuary. Limnology and Oceanography, 2000, 45(3): 580-590.
https://doi.org/10.4319/lo.2000.45.3.0580
[18] VERMA, B. S., SRIVASTAVA, S. K. Study of factors affecting phytoplankton primary productivity in a pond of Patna, Bihar, India. Nature Environment and Pollution Technology, 2016, 15(1): 291.
[19] 许秋瑾, 郑丙辉, 朱延忠, 等. 三峡水库支流营养状态评价方法[J]. 中国环境科学, 2010, 30(4): 453-457. XU Qiujin, ZHENG Binghui, ZHU Yanzhong, et al. Nutrient status evaluation for tributary of Three Gorges Reservoir. China Environmental Science, 2010, 30(4): 453-457. (in Chinese)