改性牡蛎壳及其吸附除磷性能研究
Study of Performance of Modified Oyster Shell for Phosphorus Removal
DOI: 10.12677/AEP.2017.73B001, PDF, HTML, XML,  被引量 下载: 1,479  浏览: 3,773 
作者: 项学敏*:大连理工大学环境学院,辽宁 大连;大连理工大学,工业生态与环境工程教育部重点实验室,辽宁 大连;王欢, 李文鹏:大连理工大学环境学院,辽宁 大连;王刃:大连理工大学化学学院,辽宁 大连
关键词: 改性牡蛎壳吸附除磷铁盐铝盐Modified Oyster Shell Adsorption Phosphorus Removal Ferric Salt Aluminum Salt
摘要:

本文以铝盐、铁盐为原料,对牡蛎壳进行改性,研究了改性牡蛎壳吸附除磷性能。实验表明,改性牡蛎壳吸附除磷过程符合Langmuir等温吸附方程,其吸附动力学与准二级方程拟合最佳。改性牡蛎壳对磷的理论饱和吸附量为20~30 mg P (以 计)/g吸附剂,是未改性的5倍左右。通过KCl-NaOH-HCl逐级浸提法分析得知,吸附饱和后吸附剂中磷以钙磷结合、铝磷结合或铁磷结合形态存在。改性牡蛎壳对模拟含磷废水除磷率在90%以上,天然牡蛎壳只有41%。 

The oyster shell was modified through ferric salt and aluminum salt, and the performance of modified oyster shell for phosphorus removal was examined. Results indicated that the adsorption processes of phosphorus by modified oyster shell were in conformity with Langmuir isothermal adsorption equation, while the relevant adsorption followed the second-order kinetic equation. The theoretical saturated adsorption capacity of the modified oyster shell was 20 - 30 mg P ( )/g, which was 5-folds higher than that of original oyster shell. Analysis of KCl-NaOH-HCl sequential extraction showed that the phosphorus speciation in saturated adsorbents was in the form of Ca-bound P, Al-bound P or Fe-bound P. More than 90% of phosphorus was removed with modified oyster shell from artificial wastewater, whereas only 41% was removed with original oyster shell.

文章引用:项学敏, 王欢, 李文鹏, 王刃. 改性牡蛎壳及其吸附除磷性能研究[J]. 环境保护前沿, 2017, 7(3): 1-9. https://doi.org/10.12677/AEP.2017.73B001

参考文献

[1] 王华光, 王凌燕, 王文静, 等. 锁磷剂对流动水环境中沉积物磷形态的作用[J]. 环境污染与防治, 2015, 37(11): 41-46.
[2] De-Bashan, L.E. and Bashan, Y. (2004) Recent Advances in Removing Phosphorus from Wastewater and Its Future Use as Fertilizer. Water research, 38, 4222-4246. https://doi.org/10.1016/j.watres.2004.07.014
[3] Wu, F., Qing, H. and Wan, G. (2001) Regeneration of N, P and Si Near Sediment/Water Interface of Lakes from Southwestern China Plateau. Water Research, 35, 1334-1337. https://doi.org/10.1016/S0043-1354(00)00380-8
[4] Schindler, D.W., Hecky, R. E., Findlay, D.L., et al. Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Sciences, 2008, 11254-11258. https://doi.org/10.1073/pnas.0805108105
[5] Smith, V.H., Schindler, D.W. (2009) Eutrophication Science: Where Do We Go from Here? Trends in Ecology & Evolution, 24, 201-207. https://doi.org/10.1016/j.tree.2008.11.009
[6] 亓延敏, 吕锡武, 徐微. 污水除磷及回收技术[J]. 山西建筑, 2008, 34(4): 191-192.
[7] 吕亚云, 污水化学除磷处理技术[J]. 河南化工, 2010, (8): 45.
[8] Oguz, E. (2005) Sorption of Phosphate from Solid/Liquid Interface by Fly Ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262, 113-117. https://doi.org/10.1016/j.colsurfa.2005.04.016
[9] Lan, Y.Z., Zhang, S., Wang, J.K., et al. (2006) Phosphorus Removal Using Steel Slag. Acta metallurgica sinica (English letters), 19, 449-454. https://doi.org/10.1016/S1006-7191(06)62086-3
[10] Zeng, L., Li, X. and Liu, J. (2004) Adsorptive Removal of Phosphate from Aqueous Solutions Using Iron Oxide Tailings. Water Research, 38, 318-1326. https://doi.org/10.1016/j.watres.2003.12.009
[11] 翟由涛, 杭小帅, 干方群. 改性高岭土对废水中磷的吸附性能及机理研究[J]. 土壤, 2012, 44(1): 55-61.
[12] 王宇, 谌建宇, 李小明, 等. 镧改性粉煤灰合成沸石的同步脱氨除磷研究[J]. 中国环境科学, 2011, 31(7): 1152-1158.
[13] 李延波, 邱立平, 王广伟, 等. 水热改性颗粒钢渣的除磷效能[J]. 中国给水排水, 2011, 27(9): 74-77.
[14] 刘宝河, 张林生, 孟冠华, 等. TBX 多孔陶粒滤料制备及废水吸附除磷试验研究[J]. 北京大学学报: 自然科学版, 2010, 46(3): 389-394.
[15] 李林锋, 吴小凤. 天然牡蛎壳对磷吸附特性试验研究[J]. 三峡环境与生态, 2011, 33(6): 1-4.
[16] 黄艳, 于岩, 吴任平, 等. 硅藻土/牡蛎壳制备可回收废水除磷材料的研究[J]. 福州大学学报: 自然科学版, 2009, 37(3): 452-456.
[17] Luo, H., Huang, G., Fu, X., et al. (2013) Waste Oyster Shell as a Kind of Active Filler to Treat the Combined Waste Water at an Estuary. Journal of Environmental Sciences, 25, 2047-2055. https://doi.org/10.1016/S1001-0742(12)60262-9
[18] 李文鹏, 王欢, 项学敏. 高岭土改性牡蛎壳及其吸附除磷性能研究[C]//中国环境科学学会. 中国环境科学学会学术年会论文集:2016年卷. 海口, 2016: 1947-1953.
[19] Veli, S. and Alyüz, B. (2007) Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay. Journal of Hazardous Materials, 149, 226-233. https://doi.org/10.1016/j.jhazmat.2007.04.109
[20] 廖敏, 谢正苗. 镉在红壤中的吸附特征[J]. 浙江农业大学学报, 1998, 24(2): 99-202.
[21] Zuhairi, W.Y.W. (2003) Sorption Capacity on Lead, Copper and Zinc by Clay Soils from South Wales, United Kingdom. Environmental Geology, 45, 236-242. https://doi.org/10.1007/s00254-003-0871-5
[22] McKay, G., Ho, Y.S. and Ng, J.C.Y. (1999) Biosorption of Copper from Waste Waters: A Review. Separation and Purification Methods, 28, 87-125. https://doi.org/10.1080/03602549909351645
[23] 周光红. 几种固体废弃物吸附除磷性能及其机理探讨[D]. 大连: 大连理工大学, 2011.
[24] 庞燕. 五大湖沉积物磷形态及其磷吸附特征研究[D]. 北京: 中国环境科学研究院, 2004.
[25] Hieltjes, A.H.M. and Lijklema, L. (1980) Fractionation of Inorganic Phosphates in Calcareous Sediments. Journal of environmental Quality, 7, 405-307. https://doi.org/10.2134/jeq1980.00472425000900030015x
[26] 李悦, 乌大年, 薛永先. 沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J]. 海洋环境科学, 1998, 17(1): 15-20.
[27] 周光红, 项学敏, 李厚芬, 等. 粉煤灰对水溶液中磷的吸附性能及机理[J]. 环境工程学报, 2012, 6(8): 2600-2606.
[28] Chang, S.C. and Jackson, M.L. (1957) Fractionation of Soil Phosphorus. Soil Sci, 84, 133-144. https://doi.org/10.1097/00010694-195708000-00005