具有量子尺寸表面的硅纳米线光电极制备及其光电化学性能研究
Fabrication and Photoelectrochemical Performance of Si Nanowire Photoelectrode Structured with Quantum Size Surface
DOI: 10.12677/AEP.2017.73B002, PDF, HTML, XML, 下载: 1,543  浏览: 3,260 
作者: 于师懿, 于洪涛*:大连理工大学环境学院,辽宁 大连
关键词: 光电催化量子尺寸多级硅Photoelectrocatalysis Quantum Size Hierarchical Si
摘要:

硅材料在光催化领域优势明显,但稳定性较差,在潮湿空气及水溶液中易被氧化,表面形成不导电的二氧化硅层。通过对硅纳米线进行二次刻蚀,在纳米线表面形成量子点和纳米孔,可以有效稳定纳米线,且对一次刻蚀3min的纳米线优化效果最明显,循环伏安扫描20圈后,电流降幅从34%降至1.8%,光电流增致原来的4倍,吸光度也有明显增加。 S

ilicon semiconductor material has strong competitive in photocatalytic, but it is unstable in moist environment and aqueous solution as oxidized to insulative silicon dioxide on the surface. After the second etch on Si nanowires, quantum dots and nanopores are formed on most part of the surface which can stabilize the Si nanowires efficiently, and the hierarchical Si etched for 3 minutes on the first etch shows the best performance. Cyclic voltammetry measurements under xenon lamp irradiation demonstrates the current decline proportion fall off from 34% to 1.8% after 20 cycles, and the photocurrent raise to 4 times comparing with the original smooth nanowires, meanwhile, absorbancy rises obviously.

文章引用:于师懿, 于洪涛. 具有量子尺寸表面的硅纳米线光电极制备及其光电化学性能研究[J]. 环境保护前沿, 2017, 7(3): 10-17. https://doi.org/10.12677/AEP.2017.73B002

参考文献

[1] Fujihira, M., Satoh, Y. and Osa, T. (1981) Heterogeneous Photocatalytic Oxidation of Aromatic Compounds on TiO2. Nature, 293, 206-208. https://doi.org/10.1038/293206a0
[2] Dutta, M., Thirugnanam, L. and Trinh, P.V., et al. (2015) High Effi-ciency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires. Acs Nano, 9, 6891-6899. https://doi.org/10.1021/acsnano.5b03268
[3] Carey, J.H., Lawrence, J., Helle, M., et al. (1976) Photodechlorination of PCB's in the Presence of Titaniumdioxide in Aqueous Suspensions. B. Environ. Contam. Tox., 16, 697-701. https://doi.org/10.1007/BF01685575
[4] Murcia-Lopez, S., Hidalgo, M.C. and Navio, J.A. (2011) Synthesis, Characteriza-tion and Photocatalytic Activity of Bi-Doped TiO2 Photocatalysts under Simulated Solar Irradiation. Appl. Catal. A, 404, 59-67. https://doi.org/10.1016/j.apcata.2011.07.008
[5] Dong, H., Zeng, G., Tang, L., et al. (2015) An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Research, 79, 128-146. https://doi.org/10.1016/j.watres.2015.04.038
[6] Dunl, P., Byrne, J.A., Manga, N., et al. (2002) The Photocatalyti Removal of Bacterial Pollutants from Drinking Water. J. Photoch. Photobio. B., 148, 355-363. https://doi.org/10.1016/S1010-6030(02)00063-1
[7] Bak, T., Nowotny, J., Rekas, M., et al. (2002) Photo-Electrochemical Hydrogen Generation from Water Using Solar Energy. Materials-Related Aspects. International Journal of Hydrogen Energy, 27, 991-1022. https://doi.org/10.1016/S0360-3199(02)00022-8
[8] Kudo, A. and Miseki, Y. (2009) Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev., 38, 253-278. https://doi.org/10.1039/B800489G
[9] Bak, T., Nowotny, J., Rekas, M., et al. (2002) Photo-Electrochemical Hydrogen Generation from Water Using Solar Energy. Materials-Related Aspects. International Journal of Hydrogen Energy, 27, 991-1022. https://doi.org/10.1016/S0360-3199(02)00022-8
[10] Yu, H., Chen, S., Fan, X., et al. (2010) A Structured Macroporous Silicon/Graphene Heterojunction for Efficient Photoconversion. Angewandte Chemie International Edition, 49, 5232-5235. https://doi.org/10.1002/ange.200907173
[11] Lewis, N.S. Photoelectrochemical Water Splitting: Silicon Photocathodes for Hydrogen Evolution. Proceedings of SPIE-The International Society for Optical Engineering, 2010, 80-84.
[12] Rahim, A.F.A., Hashim, M.R. and Ali, N.K. (2011) High Sensitivity of Palladium on Porous Silicon MSM Photodetector. Physica B Condensed Matter, 406, 1034-1037. https://doi.org/10.1016/j.physb.2010.12.056
[13] Megouda, N., Cofininier, Y., Szunerits, S., et al. (2011) Photocatalytic Activity of Silicon Nanowires under UV and Visible Light Irradiation. Chemical Com-munications, 47, 991-993. https://doi.org/10.1039/C0CC04250A
[14] Seger, B., Pedersen, T., Laursen, A.B., et al. (2013) Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution. Journal of the American Chemical Society, 135, 1057-1064. https://doi.org/10.1021/ja309523t
[15] Coridan, R.H., Arpin, K.A., Brunschwig, B.S., et al. (2014) Pho-toelectrochemical Behavior of Hierarchically Structured Si/WO3 Core-Shell Tandem Photoanodes. Nano Letters, 14, 2310-2317. https://doi.org/10.1021/nl404623t
[16] Rasool, K., Rafiq, M.A., Li, C.B., et al. (2012) Enhanced Electrical and Dielectric Properties of Polymer Covered Silicon Nanowire Arrays. Applied Physics Letters, 101, 23114. https://doi.org/10.1063/1.4735278
[17] Peng, C., Gao, J., Wang, S., et al. (2011) Stability of Hydrogen-Terminated Surfaces of Silicon Nanowires in Aqueous Solutions. Journal of Physical Chemistry C, 115, 3866-3871. https://doi.org/10.1021/jp109963z
[18] Bashouti, M.Y., Stelzner, T., Christiansen, S., et al. (2009) Covalent Attachment of Alkyl Functionality to 50 nm Silicon Nanowires through a Chlorination/Alkylation Process. Journal of Physical Chemistry C, 113, 14823-14828. https://doi.org/10.1021/jp905394w
[19] Delley, B. and Steigmeier, E.F. (1993) Quantum Confinement in Si Nanocrystals. Physical Review B Condensed Matter, 47, 1397-1400. https://doi.org/10.1103/PhysRevB.47.1397
[20] Wilson, W.L., Sza-jowski, P.F. and Brus, L.E. (1993) Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals. Science, 262, 1242-1244. https://doi.org/10.1126/science.262.5137.1242
[21] Liu, X., Cheng, H., Zhao, T., et al. (2014) Facile Routes of Manufacturing Silicon Quantum Dots on a Silicon Wafer and Their Surface Activation by Esters of N-Hydroxysuccinimide. Journal of Colloid and Interface Science, 426, 117-123. https://doi.org/10.1016/j.jcis.2014.04.007
[22] Yu, R., Lin, Q., Leung, S.F., et al. (2012) Nanomaterials and Nanostructures for Efficient Light Absorption and Photovoltaics. Nano Energy, 1, 57-72. https://doi.org/10.1016/j.nanoen.2011.10.002